Newton's Second Law for Rotation (9-4 of Tipler-Mosca)

Figure 9-16 of Tipler-Mosca shows a disk set spinning by two tangential forces $\vec{F_1}$ and $\vec{F_2}$. The points at which such forces are implied are important: The perpendicular distance between the line of action of a force and the axis of rotation is called the lever arm l of the force.

The torque τ is defined as the force times its lever arm:

$$au = F l$$
 .

PRS: In figure 9-20 of Tipler-Mosca the lever arm is (pick one):

1. $l = r |\sin \phi|$ or 2. $l = r |\cos \phi|$

where ϕ is the angle between the force \vec{F} and the position vector \vec{r} . Therefore, the magnitude of the torque is (pick one):

1.
$$\tau = F r |\sin \phi|$$
 or 2. $\tau = F r |\cos \phi|$

In figure 9-19 of Tipler-Mosca the force \vec{F} is resolved into two components: The radial force \vec{F}_r along the radial line and the tangential force \vec{F}_t perpendicular to the radial line. The torque is the given by (pick one):

1.
$$\tau = F_{\rm r} r$$
 or 2. $\tau = F_{\rm t} r$

The tangential component of the force is given by (pick one):

1.
$$F_{t} = F |\sin \phi|$$
 or 2. $F_{t} = F |\cos \phi|$

The torque is taken positive if it tends to rotate the disk counterclockwise, and negative if it tends to rotate the disk clockwise. Therefore, our final equation is

 $\tau = F r \sin(\phi)$

for the situation of figures 9-19 and 9-20. The following statement holds:

The angular acceleration of a rigid body is proportional to the net torque acting on it.

Proof: Let $\vec{F_i}$ be the net external force acting on the ith particle of the rigid body. The torque on the ith particle is

$$\tau_i = F_i r_i \sin(\phi_i) = F_{t,i} r_i$$

and by Newton's second law the tangential acceleration of the ith particle is

$$F_{\mathbf{t},i} = m_i \, a_{\mathbf{t},i} = m_i \, r_i \, \alpha$$

where we use that the angular velocity and the angular acceleration are the same for all particles:

$$\frac{d\phi_i}{dt} = \omega$$
 and $\frac{d^2\phi_i}{dt^2} = \alpha$.

Therefore,

$$\tau_i = r_i F_{\mathrm{t},i} = m_i r_i^2 \,\alpha$$

and summing over all particles gives

$$\sum_{i} \tau_{i} = \left(\sum_{i} m_{i} r_{i}^{2}\right) \alpha = I \alpha .$$

We thus have

$$\alpha = \frac{\tau}{I}$$

for the angular accelaration due to one torque applied to a rigid body.

Gravitational Force acting on a Wheel

The same weight of mass m pulls on two wheels, which have different moments of inertia:

$$\tau = F R = m g R = I \alpha$$

PRS and experiment: Which wheel will accelerate faster?

- 1. The one with the larger I.
- 2. The one with the smaller I.

For constant angular acceleration the time dependence of the angle is

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

Assume a wheel accelerates with constant α and is initially at rest. PRS: What is ω_0 ?

1. $\omega_0 = 0$.

2. $\omega_0 = \text{constant} > 0$.

Assume that after 1 second the wheel has made 5 revolutions. PRS: Assume $\theta_0 = 0$ What is, after one second, θ in radians? 1. 5 rad 2. 1800 rad 3. 5 π rad 4. 10 π rad. PRS: What is α ? 1. 10 π rad/s² 2. 10 π rad/s 3. 20 π rad/s² 4. 20 π rad/s. PRS: What is ω ?

1. $10\pi \text{ rad/s}^2$ 2. $10\pi \text{ rad/s}$ 3. $20\pi \text{ rad/s}^2$ 4. $20\pi \text{ rad/s}$.

An Application of Newton's Second Law of Rotation

Figure 9-24 of Tipler-Mosca: An object of mass m is tied to a light string wound around a wheel that has a moment of inertia I and radius R. The wheel bearing is frictionless, and the string does not slip on the rim. Find the tension in the string and the acceleration of the object.

- 1. Torque on the wheel and angular acceleration:
 - $\tau = T R = I \alpha \,.$
- 2. Linear acceleration of the object: m g T = m a.
- 3. The non-slip condition: $a = R \alpha$.

Solving for T and a:

$$TR = I\frac{a}{R} \Rightarrow a = \frac{TR^2}{I}$$
$$mg - T = m\frac{TR^2}{I}$$
$$T\left(1 + \frac{mR^2}{I}\right) = mg$$
$$T = \frac{mg}{I} = \frac{mgI}{I}$$

$$= \frac{TR^{2}}{1 + mR^{2}/I} = \frac{TR^{2}}{I + mR^{2}}$$
$$a = \frac{TR^{2}}{I} = \frac{mgR^{2}}{I + mR^{2}}$$

Rolling With Slipping

Example: A bowling ball of mass M and radius R is thrown so that in the instant it touches the floor it is moving with speed $v_0 = 5 \text{ m/s}$ and is not rotating. The coefficient of friction between the ball and the floor is $\mu_k = 0.08$. Find the time the ball slides before the non-slip condition is met.

- 1. The net force on the ball is $f_k = -\mu_k M g = M a_{cm}$ Therefore, the linear acceleration is $a_{cm} = -\mu_k g$
- 2. The linear velocity is: $v_{cm} = v_0 + a_{cm} t = v_0 \mu_k g t$

3. The torque about the CM axis is the frictional force times the lever arm: $\tau = \mu_k M g R = I_{\rm cm} \alpha$ and with $I_{\rm cm} = 2 M R^2/5$ we get:

$$\alpha = \frac{\mu_k M g R}{I_{\rm cm}} = \frac{5 \,\mu_k M g R}{2 \,M R^2} = \frac{5}{2} \,\left(\frac{\mu_k g}{R}\right)$$

- 4. The angular velocity is: $\omega = \alpha t = \frac{5}{2} \left(\frac{\mu_k g}{R} \right) t$
- 5. Solve for the time t_1 at which $v_{\rm cm} = R \omega$:

$$v_0 - \mu_k g t_1 = 5 \,\mu_k g t_1/2 \quad \Rightarrow \quad 2 \, v_0 = (2+5) \,\mu_k g t_1$$

 $t_1 = \frac{2 \, v_0}{7 \mu_k g} = 1.82 \,\mathrm{s}$

Cylindrical Roller

Sum of torques: $(f_x \text{ force of static friction}, r_2 > r_1)$

$$F r_1 + f_x r_2 = I \alpha$$

CM motion :

$$F_x + f_x = M a_x = M r_2 \alpha$$
$$F_x = F \cos(\theta)$$

Hollow cylinder of radius r_1 (result depends on the detailed mass-distribution):

$$F r_1 + f_x r_2 = M (r_1)^2 \alpha$$

 $f_x = M \left(\frac{r_1}{r_2}\right)^2 r_2 \alpha - F \frac{r_1}{r_2}$

Insert in CM motion:

$$F\left(\cos(\theta) - \frac{r_1}{r_2}\right) = \left[1 - \left(\frac{r_1}{r_2}\right)^2\right] M a_x$$

The right-hand side factor in from of the mass is always positiv. On the left-hand side the sign of the force changes at

$$\cos(\theta) = \frac{r_1}{r_2} \; .$$