
Heat Capacities of Gases

The heat capacity at constant pressure CP is greater than the heat capacity
at constant volume CV , because when heat is added at constant pressure, the
substance expands and work.

When heat is added to a gas at constant volume, we have

QV = CV 4T = 4U + W = 4U

because no work is done. Therefore,

dU = CV dT and CV =
dU

dT
.

When heat is added at constant pressure, we have

QP = CP 4T = 4U + W = 4U + P 4V .
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For infinitesimal changes this becomes

CP dT = dU + P dV = CV dT + P dV .

From the ideal gas law, P V = n R T , we get for constant pressure

d(P V ) = P dV + V dP = P dV = n R dT .

Substituting this in the previous equation gives

Cp dT = CV dT + n R dT .

Dividing dT out, we get
CP = CV + n R .

For an ideal gas, the heat capacity at constant pressure is greater than that at
constant volume by the amount n R.
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For an ideal monatomic gas the internal energy consists of translational energy
only,

U =
3
2

n R T .

The heat capacities are then

CV =
dU

dT
=

3
2

n R

and

CP = CV + n R =
5
2

n R .

Heat Capacities and the Equipartition Theorem

Table 18-3 of Tipler-Mosca collects the heat capacities of various gases. Some agree
well with the predictions for monatomic gases, but for others the heat capacities
are greater than predicted. The reason is that such molecules can have other types
of energy.

3



From the table we see that nitrogen, oxygen, hydrogen, and carbon monoxide all
have molar heat capacities at constant volume close to

c′ =
5
2

R .

Thus, these molecules appear to have five degrees of freedom. About 1880, Clausius
proposed that these gases consist of diatomic molecules, which can rotate about
two axes, see figure 18-14 of Tipler-Mosca. The kinetic energy of the molecule is
then

K =
1
2

m v2
x +

1
2

m v2
y +

1
2

m v2
z +

1
2

Ix′ ω
2
x′ +

1
2

Iy′ ω
2
y′ .

According to the equipartition theorem

U = 5×
(

1
2

n R T

)
=

5
2

n R T ⇒ CV =
5
2

n R .
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Quantum Effects

Apparently, a diatomic gas does not rotate about the axis joining the two atoms
and monatomic gases do not rotate at all. These effects are explained by modern
physics. Quantum mechanics confines the rotational levels to discrete energy values
(Figure 7-15 of Tipler-Mosca shows the discrete energy levels for a quantized
oscillator, which is a similar case). If

4E � k T

holds, where 4E is the typical difference between quantum energy levels,
thermal fluctuations cannot excite them and the equipartition theorem fails. The
equipartition theorem holds only for

k T � 4E .

There are huge differences of4E for the rotations of molecules. They are related to
similar difference between the diameter of a single atom and the distance between
two atoms in a molecule.
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Heat Capacities of Solids

The metals listed in Table 18-1 of Tipler-Mosca have approximately equal molar
specific heats of about

c′ = 3R = 24.9 J/mol ·K .

This results is known as the Dulong-Petit law, which can be understood by applying
the equipartition theorem to a simple model for a solid. According to this model, a
solid consists of a regular array of atoms which are connected by harmonic forces
to their neighbors, see figure 18-15 of Tipler-Mosca.

Each atom can vibrate in the x, y, and z direction. Thus, the total energy of an
atom in the solid is

E =
1
2

m (v2
x + v2

y + v2
z) +

1
2

keff (x2 + y2 + z2)

where keff is the effective force constant of the oscillators. Each atom thus has six
degrees of freedom and the equipartition theorem states

U = 6× 1
2

n R T ⇒ c′ = 3R .
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Experimental Determination of the Specific Heat of Solids

Remember the Lab!

Let us test some unknown metal of mass M .

1. Calorimeter of mass m and metal are of the same material:

Cmetal M (T initial
metal − T final

metal) =

Cmetal m (T final
water − T initial

water ) + Cwater Mwater (T final
water − T initial

water )

2. Calorimeter of mass m and metal are of the same material:

Cmetal M (T initial
metal − T final

metal) =

Ccalorimeter m (T final
water − T initial

water ) + Cwater Mwater (T final
water − T initial

water )
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Quasi-static Adiabatic Expansion of a Gas

A process in which no heat flows in or out of the system is called adiabatic. This
is achieved through thermal insulation of the system.

Figure 18-19 of Tipler-Mosca considers the quasi-static adiabatic expansion of an
ideal gas (T1 6= T2 now). We find the equation for the curve using the first law of
thermodynamics and the equation of state. We have

0 = dQ = dU + dW = CV dT + P dV .

Then, using P = n R T/V :

CV dT + n R T
dV

V
= 0 or

dT

T
+

n R

CV

dV

V
= 0 .

This can be written as
dT

T
+ (γ − 1)

dV

V
= 0

with γ = CP/CV , because
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γ − 1 =
CP − CV

CV
=

n R

CV
.

Integration gives
ln(T ) + (γ − 1) ln(V ) = constant .

Using properties of the logarithm

ln
(
T V γ−1

)
= constant or T V γ−1 = constant′ .

Using n R T = P V , the P versus V relationship follows:

P V γ = const′′ .

The work done by a gas in an adiabatic expansion follows from dQ = 0:

dWadiabatic = −dU = −CV dT

and then

Wadiabatic = −CV

∫
dT = −CV 4T .
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The Second Law of Thermodynamics (Chapter 19)

How do we “conserve energy” when energy is always conserved according to the
first law of thermodynamics? The answer is that some energy forms are more useful
than others for the purpose of performing mechanical work. Based on experimental
observations, this has been summarized by Kelvin into the following statement:

It is impossible to remove thermal energy from a system at a single temperature and
convert it into mechanical work without changing the system or its surroundings in
some other way (Kelvin).

A common example of the conversion of mechanical energy into heat (thermal
energy) is a block sliding on a table. The reverse process – a table converting some
of its thermal energy spontaneously into kinetic energy of the block – never occurs!
Some processes are irreversible. This lack of symmetry is expressed in Clausius
version of the second law of thermodynamics:

There can be no process whose only final result is to transfer thermal energy from
a cooler object to a warmer one (Clausius).
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Heat Engines

A heat engine is a cyclic device whose purpose is to convert as much heat input
into work as possible. Heat engines contain a working substance that absorbs a
quantity of heat Qin, does work W , and gives off heat |Qout| (Qout < 0 according
to our sign convention) as it returns to the initial state.

Examples: Steam engines (figure 19-1), internal combustion gasoline engines
(figures 19-2, 19-3).

Figure 19-4 shows a schematic representation of a basic heat engine. The engine
removes heat energy Qin = Qh from a hot reservoir at temperature Th, does work
W , and gives off heat Qc = Qout to a cold reservoir at temperature Tc. According
to the first law of thermodynamics the work done equals the net heat absorbed:

W = Qin − |Qout| .
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The efficiency ε of a heat engine is the ratio of work done to the heat absorbed
from the hot reservoir:

ε =
W

Qin
=

Qin − |Qout|
Qin

= 1− |Qout|
Qin

.

The heat engine statement of the second law of thermodynamics is:

It is impossible to make a heat engine whose efficiency is 100%.

In other words, it is impossible for a heat engine working in a cycle to produce no
other effect that that of extracting thermal energy from a reservoir and performing
an equivalent amount of work.

This is equivalent Kelvin’s statement.

The best steam engines operate near 40% efficiency, the best internal combustion
engines near 50%.
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Refrigerators

A refrigerator is essentially a heat engine running backward. Figure 19-5 gives a
schematic representation. The refrigerator removes heat energy Qin = Qc from a
cold reservoir and gives off heat |Qout| = |Qh| to a hot reservoir using work W .
(The sign convention of W is changed by a minus sign with respect to the heat
engine.)

The refrigerator statement of the second law of thermodynamics is:

It is impossible for a refrigerator working in a cycle to produce no other effect than
the transfer of thermal energy from a cold object to a warmer object.

This is equivalent to Clausius statement.

The coefficient of performance COP of a refrigerator is the ratio of the heat
removed by the work used:

COP =
Qc

W
.

The greater COP, the better the refrigerator. Typical values are between 5 and 6.
The second law of thermodynamics says that COP cannot be infinite.
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The heat engine and refrigerator statements are equivalent:

A perfect refrigerator could be used to transfer heat from a cold to a hot reservoir.
This would allow to run an engine, which transfers some of the heat of the hot
reservoir into work and the rest back to the cold reservoir.

A perfect heat engine can be used to transfer heat from a hot reservoir into work,
which can be used by a refrigerator to cool a cold reservoir and to transfer the
remaining work back to the hot reservoir.
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The Carnot Engine

What is the maximum possible efficiency of an engine? This questions was answered
1824 by the French engineer Carnot, before either the first or the second law of
thermodynamics had been established. The results is known as the Carnot theorem:

No engine working between two given heat reservoirs can be more efficient than a
reversible engine working between these two reservoirs.

What makes a process irreversible? The conversion of mechanical energy into heat
is not reversible, nor is the conduction of heat from a hot object to a cold one. A
third type of irreversibility occurs when the systems moves through non-equilibrium
states, e.g., when there is a turbulence or a gas explodes. For a process to be
reversible, we must be able to move it backward through the same equilibrium
states in the reverse order. Therefore, for a process to be reversible:
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1. No work must be dissipated into heat.

2. Heat conduction can only occur thermally.

3. The process must be quasi-static.

The Carnot cycle, depicted in figure 19-8, consists of four reversible steps:

1. A quasi-static isothermal absorption of heat from a hot reservoir.

2. A quasi-static adiabatic expansion to a lower temperature.

3. A quasi-static isothermal exhaustion of heat to a cold reservoir.

4. A quasi-static adiabatic compression back to the original state.
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It can be shown that the efficiency

ε = 1− |Qout|
Qin

of a Carnot engine does not depend on the working substance. So, we use an ideal
gas to calculate it. Since 4U = 0 during an isothermal expansion of an ideal gas,
the heat absorbed during step 1 is

Qin = W =
∫ 2

1

P dV =
∫ 2

1

n R Th

V
dV = n R Th ln

(
V2

V1

)
.

Similarly, the heat given off to the cold reservoir in step 3 is

|Qout| = n R Tc ln
(

V3

V4

)
.

17



The ratio of these heat energies is

|Qout|
Qin

=
Tc ln(V3/V4)
Th ln(V2/V1)

The volumes (V2, V3) and (V1, V4) are related by the equation for a quasi-static
adiabatic expansion:

Th V γ−1
2 = Tc V γ−1

3 and Th V γ−1
1 = Tc V γ−1

4 .

Dividing these two equations, we obtain(
V2

V1

)γ−1

=
(

V3

V4

)γ−1

.

Therefore, ln(V2/V1) = ln(V3/V4) and we can cancel the logarithmic terms in the
ratio of heat energies. The Carnot efficiency depends only on the temperatures of
the two reservoirs

εC = 1− Tc

Th
.
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