
21 August 1997 

PHYSICS LETTERS 6 

Physics Letters B 407 (1997) 73-78 

Bayesian analysis of multi-source 

Pushpalatha C. Bhat a, Harrison B. Prosper b,l, Scott 

data 

S. Snyder” 
a Fermi National Accelerator Laborarory, PO. Box 500. Batavia, IL 60510, USA 
b Department of Physics, Florida State University, Talkzhassee, FL 32306, USA 

’ Brookhaven National Laboratory, Upton, NY 11973. USA 

Received 17 April 1997; revised manuscript received 4 June 1997 
Editor: L. Montanet 

Abstract 

We present a simple method, based on Bayes’ theorem, to fit binned data to one or more multi-source models. Assuming a 
Poisson probability for the count in each bin we can eliminate exactly the nuisance parameters from the likelihood function 
and arrive at a formula that can be broadly applied. We illustrate the method by showing how it can be used to estimate 
the top quark mass. @ 1997 Published by Elsevier Science B.V. 
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1. Introduction 

A problem that arises frequently in experimental 
physics is to fit binned data to a model consisting of a 
sum of N sources, taking due account of known uncer- 
tainties. The prototypical example is a 2-source model 

consisting of a sum of signal plus background. Barlow 
and Beeston [ 1 ] have provided perhaps the best solu- 
tion to that problem within the framework of frequen- 
tist statistics. In this paper, we suggest an alternative 

Buyesiun method of analysis which, we believe, has 
conceptual and practical advantages. 

First, we shall review briefly the conceptual basis 
of the method of Ref. [ 11, because it looks superti- 
cially similar to the one we propose and, therefore, 

one might be tempted to see no difference between 
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the two. In frequentist statistics [2] a single data set 
is considered to be drawn from an ensemble of data 
sets. For the problem considered here each data set 

consists of a set of observed counts {Di} and N sets 
of source counts {Aji}, where i = 1, . . . , A4 label the 
bins and j = 1, . . . . N the sources. We assume that the 

mean count in the ith bin, di, and the mean source 
counts, {Uji}, are related by di E C:, pjaji. The 

quantity aji is the mean count for bin i of source j 
and pj is the corresponding source strength, given as a 

fraction of the mean count xi Uji of source j. Usually, 
the source counts {Aji} are the result of Monte Carlo 

calculations. If we assign a Poisson probability to the 
total count in each bin then we can write the likelihood 
function as 

0370-2693/97/$17.00 0 1997 Published by Elsevier Science B.V. All rights reserved. 
PII SO370-2693(97)00723-5 



74 P.C. Bhat et al./Physics Letiers B 407 (1997) 73-78 

(1.1) 

The likelihood function is just the sampling distribu- 

tion for the M + N x M counts. It contains N x M 

unknown parameters aji, plus N unknown parameters 

pj; The parameters of interest are the source strengths 
pj; the parameters aji are, in the present context, nui- 
sance parameters which we must get rid of to make 
progress. 

There is no general method to eliminate nuisance 
parameters from a likelihood function in the frequen- 

tist approach [ 21. What is done, in practice, is to re- 
place the nuisance parameters with their maximum 

likelihood estimates. Unfortunately, this does not guar- 
antee their elimination from the sampling distribution 

of the estimates. Nor is there a guarantee that these 
estimates will always lie in the physical region. 

The analysis method we suggest here provides a nat- 

ural and consistent framework to overcome the afore- 

mentioned problems. After describing the method we 
show how it can be used to perform a straightforward 
analysis of top quark mass data. 

2. The method 

Let h4 be the number of bins into which the data 
are divided. For each multi-source model, labelled by 

the discrete parameter K, we shall assign a Poisson 

probability to the count per bin and take our likelihood 
function to be 

M exp( -di)dy 
UDla, P, K) = n 

i=l 
Di! . 

(2.1) 

The likelihood function is the probability associated 
with the observed counts {Di}. The second product in 
Eq. ( 1.1) is interpreted as an informative prior prob- 
ability 

for the nuisance parameters aji. 

(2.2) 

The unknowns are the parameters pj and aji. In or- 
der to make inferences about the former the nuisance 
parameters Uji must be eliminated. According to prob- 

ability theory [ 31 the general way to do this is to use 
Bayes’ theorem 

J-‘(a, P, KID) 

L(Dlu,p,K)Q(u,K)q(p,K) 
= CK J, J, L(Dla,p, K)Q(c K)dP,K) ’ 

(2.3) 

and then marginalize (that is, integrate) the posterior 

probability P(u,p, KID) with respect to a, to obtain, 

P(p,K]D) = J P(a, P, KID). (2.4) 

a 

The function q(p, K) (E f(p)dp) is, for a specified 
model K, the prior probability for the source strengths 
pj, knowledge of which we assume is logically inde- 
pendent of knowledge of the parameters Uji. 

It is convenient to define the global likelihood func- 

tion l(Dlp, K) by 

l(Dlp>K) = 
J 

L(WAP,K)Q(GK), (2.5) 
a 

and write Eq. (2.4) as 

I(Dlp, K) q(pv K) 

‘(” K’D) = CK Jp I(%, K) q(p, K) * (2.6) 

With our choices for the prior probability, Eq. (2.2)) 
and the likelihood function, Eq. (2.1) , it is possible to 
perform the N x M-dimensional integral in Eq. (2.4) 

exactly and obtain the formula 

l(Dlp,K) =fi 5 fi ( Aji;k’) 
i=l kl,...,kN=O j=1 

Pi”l 
’ (1 + pj)A,c+kj+l ’ (2.7) 

where the indices kj satisfy the multinomial constraint 

CEi kj = Di. Th e calculation is outlined in the ap- 
pendix. 

We again stress the importance of being clear about 
the conceptual basis of the method; in particular, we 
should understand what P(p, KID) is and what it is 
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not. The function P(p, KID) describes, in a proba- 
bilistic manner, what we know about the parameters 
after having acquired a particular data set {Di} and 
after having performed a particular set of Monte Carlo 
calculations, leading to a particular distribution of bin 
counts {Aji}. It does not describe the sampling distri- 
bution of the parameters pj. The source strengths pj 
are presumed to have fixed values, albeit unknown. If 
nonetheless we wish to interpret P(p, KID) in fre- 
quency terms we would have to posit an ensemble of 
hypothetical universes each with differing sets of fixed 
source strengths. We see, however, neither a concep- 
tual nor a practical advantage in this artifice over sim- 
ply interpreting P(p, KID) as a weight between zero 
and one that describes how well we know the param- 
eters pj after we have acquired a particular data set. 
Likewise, the prior probability q(p, K) is a weight we 
assign consistent with whatever pertinent information 
we might have about the parameters pi, irrespective 
of the information provided by the data set D. 

3. Estimating physical quantities 

When we have several models, each labelled by the 
parameter K, we can calculate the probability of each 
model K by marginalizing P(p, KID) with respect to 

P: 

P(KID) = 
s 
P(p,KID). (3.1) 

P 

An interesting application of Eq. (3.1) is when K 
labels the elements of a set of models that differ in the 
value of some physical quantity; for example, the top 
quark mass. In the case of top anti-top events, formed 
in the reaction pp + tf, P (KI D) would pick out the 
background plus signal model with the top quark mass 
that best fits the data. Moreover, an optimal estimate 
of the physical quantity, in the sense that the mean 
squared deviation from the true value is minimized, 
is the mean of the posterior probability. Therefore, 
we would expect to obtain a good estimate of the top 
quark mass and an estimate of the uncertainty from 

&t= x@(KID), 
K 

O$ = C&P(KID) - ii2*, (3.2) 
K 

where mK is the assumed top quark mass for model 
K and oh is one (of many) measures of the width of 
the posterior distribution (assuming uniformly spaced 
mK> . This measure of uncertainty does not have a fre- 
quency interpretation because P (KI D) is not a sam- 
pling distribution. 

An alternative way to proceed would be to use 
the evidence procedure [4] which, for our case, en- 
tails inserting the maximum likelihood estimates of 
p, $ (obtained by maximizing the global likelihood 
Z(p, KID) ), into the posterior probability P (p, KJ D) 
and then using either the mean of P(p^, K(D), or the 
position of its peak as an estimate. The global likeli- 
hood Z(p, KID) is maximized at the point p such that 

(3.3) 

4. Systematic uncertainty 

There is no well-founded procedure to deal with 
systematic uncertainty in frequentist statistics. One 
either resorts to the artifice mentioned earlier or 
one abandons conceptual consistency and grafts 
Bayesian notions onto frequentist procedures [ 51. 
In the Bayesian approach systematic uncertainty can 
be treated in a unified consistent manner. It is also 
straightforward and requires merely a reinterpretation 
of the label K. 

To render the discussion more concrete let us sup- 
pose that we have generated a series of models K 
that differ not only in the physical quantity of inter- 
est, here the top quark mass, but also in the value of 
the renormalization scale used to calculate the models. 
The usual practice is to calculate the models at a small 
number of different scales. The renormalization scale 
is an example of a nuisance parameter that is unphys- 
ical and whose value is arbitrary. To the degree that 
calculations are sensitive to the renormalization scale 
the arbitrariness of the latter will introduce further un- 
certainty in the models. That uncertainty, however, can 
be accounted for by simply summing Eq. (2.6) over 
the models K that differ only by the value of the as- 
sumed scale. That is, for a given top quark mass, we 
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marginalize P (p, Kj D) with respect to the renormal- 
ization scale. To take into account the uncertainty due 

to all models considered, we marginalize with respect 

to all models K: 

P(plD) = c P(P, KID). 
K 

(4.1) 

Thus can we account for all uncertainties irrespective 

of how we label them: statistical, systematic or theo- 

retical. 

5. Estimating the top quark mass 

To illustrate the method we apply it to the problem 

of estimating the top quark mass (m,), assuming a 
set of signal plus background models. For this special 

case E@. (2.7) can be written as 

M D; 

l(Dlpl,pz,K) = ncCk,~ CD,-k,2, 

i=l k=o 

(5.1) 

where the terms C may be calculated using the recur- 
sion formula 

(A,i+f) 
CO,j=(l+pj)- 9 (5.2) 

(r= 1 . ..D., j= 1, 2), 

which is convenient for numerical calculations. 
The top quark was discovered recently in proton 

anti-proton collisions at the Fermilab Tevatron by the 
CDF and D0 collaborations [ 61. At present, the most 

accurate measurement of the top quark mass comes 
from the analysis of the decay mode ti --+ W+bW-6 
--+ Zvbq@ where one W boson decays into a lepton 
(either a muon or an electron) and a neutrino, and the 
other W boson decays into a quark anti-quark pair. The 

dominant background in this decay mode comes from 
the quantum chromodynamic (QCD) production of a 
W boson in association with multiple jets ( W+jets) . 

To obtain an estimate of the top quark mass one can 
use any kinematic quantity in the event that depends 
on the mass. For simplicity, we have generated hy- 
pothetical distributions of fitted masses for signal and 
background models to roughly simulate the data sets 
obtained by the CDF and D0 experiments. The CDF 

Fitted muss (GeVlc’) 

80 IW 120 140 160 180 200 220 240 260 280 

Fitted mass (Gevlc’) 

Fig. I, The distributions of fitted mass for simulated (a) top quark 
events with mass of 170 GeV/c* and (b) background. 

and D0 fitted mass data sets are derived by fitting 
each observed event to the top quark decay hypothe- 
sis. For the signal, our hypothetical fitted mass distri- 
butions are taken to be Gaussian with mean at the top 
quark mass and a standard deviation of 30 GeV/c*. 
We have generated 25 such distributions for top quark 
masses in the range 110 GeVlc’ to 230 GeV/c2, in 
steps of 5 GeV/c2. To model the background we su- 
perpose, in the ratio of 10 to 3, two Gaussian dis- 

tributions centered at 110 GeV/c* and 140 GeV/c2, 
and with standard deviations of 15 GeVfc* and 25 
GeV/c*, respectively. The simulated data are binned 

in forty uniform bins in the mass range of 80 GeV/c* 

to 280 GeV/c*. The simulated distributions of signal 
(for mt = 170 GeVlc2) and background are shown in 
Figs. l(a)-(b). 

We then generated data sets of increasing sample 
size by random sampling from the signal (m, = 170 
GeV/c*) and background fitted mass distributions. We 
use a signal to background ratio of one and we use bi- 
nomially distributed counts. The posterior probability 
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Fig. 2. (a) The posterior probability distribution for one hypothet- 
ical experiment with a sample size of 40 events and a signal to 
background ratio of one. The estimated top quark mass and error 
are also shown. (b) The estimated top quark mass, as a function 
of sample size, averaged over ensembles of 200 experiments. The 
error bars indicate the 68% widths of the distributions of mass 
estimates. 

P (p, KI 0) , Eq. (2.6)) is evaluated for each data set 
for each signal plus background model using Eq. (5.1) 

and taking q(p,K) to be uniform. From Eq. (3.1), 
the posterior probability distribution, P( KID), is ob- 
tained as a function of the assumed top quark mass, 

We estimate the mass and error using Eq. (3.2). The 
results are shown in Fig. 2. It can be seen that as the 

data set grows in size the estimated top quark mass 
converges to the true top quark mass and the uncer- 
tainty in the mass estimate reduces. 

To demonstrate that the method produces reliable 
results on average even for small data sets we have 

carried out ensemble studies. We generated an ensem- 
ble of 1000 data sets (for m, = 170 GeV/c*). The 
sample size for each data set is 40 events and the sig- 
nal to background ratio is chosen to be one as before. 
In Fig. 3 we show the distributions of estimated top 
quark masses and errors. The estimated top quark mass 

0: 
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Fig. 3. Distributions of (a) estimated top quark mass and (b) 
estimated RMS error on the mass from a study of an ensemble 
of 1000 hypothetical experiments. Note that the most probable 
error is approximately equal to the standard deviation of the mass 
distribution. 

peaks around the true top quark mass and the most 
probable error is approximately equal to the standard 
deviation of the distribution of estimated masses. 

We noted above that the strength pj is given as a 
fraction of the true total source count cj Uji. But how 
should we proceed if we wish to have an estimate 
of the mean number of events from source j? Let nj 

denote that quantity. By definition, nj 3 pj xi aji. 

Therefore, to get an estimate fij of Tlj we need an es- 
timate of xi aji. An obvious estimate is ci Aji. An- 

other, less obvious, one - suggested by Eq. (3.3) - is 
xi Aji + M, where M is the number of bins. The two 
estimates merge when xi Aji >> M, which is the most 
common situation. It is an open question (which we 

are currently investigating) whether it is possible to 
derive a useful exact expression for the posterior prob- 
ability P(n, K(D) rather than P(p, K(D). If so, one 
would be able to derive another estimate of nj from 
the marginal posterior probability P ( nlD> . 
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6. Conclusions 

From the Bayesian perspective the frequentist 

method has a simple interpretation. The method is 
equivalent to 1) choosing a flat prior probability for 

the parameters p (without, however, restricting the 
values these parameters might assume), a flat prior 
for the discrete parameter K, and a gamma prior 
(as described above) for the nuisance parameters a; 

and 2) finding the mode of the posterior probability 

P( a,p, KID). The uncertainty in p, however, is ob- 
tained using the sampling distribution of the estimates 
@. This is simply one of several different estimates 

that could be derived from the posterior probability 

P(a,p, KID). In our method we have restricted the 

parameters p to be always positive and we com- 
pute the mean, rather than the mode, not of the full 
posterior probability P(a,p, KID) but rather of the 
marginal distributions of p, that is, of P(p, KID). 

Bayesian reasoning leads to a well-founded mathe- 

matical procedure to treat all uncertainties, to combine 
results and to compute the conditional probability of 
a model. We have given a simple, useful and practical 
application of these ideas. 
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Appendix A 

Eq. (2.5) can be written as 

l(Dlp, K) 

dali 
expl-(1 +Pl>alila~~’ . . 

Ali! 

00 

J 
AN, 

daNi 
exp[-(l +pN)aNilaNi 

ANi! 
0 

Expanding the sum over sources gives 

Di 

(A.21 

which when inserted into the equation above leads to 

l(DJp,K) =fi 2 fJ&Tduji 
i4 &,,...,kp=O j=1 Aji!kj! o 

X exp[ -( 1 +pj)Uji]U$+k’, (A.3) 

where, for each count Di, the kj satisfy the multino- 

mial constraint cz, kj = Di. The N x M dimensional 

integral separates thus into N x M one-dimensional 
integrals that are readily evaluated in terms of gamma 

functions. When this is done we obtain Eq. (2.4). 
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