
PHYSICAL REVIEW 0 VOLUME 37, NUMBER 5 1 MARCH 1988
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The statistics of small signals masked by a background of imprecisely known magnitude is ad-
dressed from a Bayesian viewpoint using a simple statistical model which may be derived from the
principle of maximum entropy. The issue of the correct assignment of prior probabilities is resolved
by invoking an invariance principle proposed by Jaynes. We calculate the posterior probability and
use it to calculate point estimates and upper limits for the magnitude of the signal. The results are
applicable to high-energy physics experiments searching for new phenomena. We illustrate this by
reanalyzing some published data from a few experiments.

I. INTRODUCTION

Searches for new phenomena in high-energy physics
naturally yield very few events; often the background
contribution to these events is poorly known and some-
times the estimate of background level is greater than the
number of events found. This immediately leads to
difficulties and invariably to heated debate. The disagree-
ments stem from the lack of a standard statistical method
for dealing with small-signal problems. The problem is of
sufficient practical importance to merit a close examina-
tion. That is what we aim to do in this paper.
We have decided to address this problem from a Baye-

sian viewpoint. In so doing we are merely acknowledging
the fact that a coherent solution to the small-signal prob-
lem is more easily achieved within a Bayesian framework
than one which uses the methods of "classical" (i.e.,
orthodox) statistics. ' This requires of course that we ac-
cept the notion that probability is to be interpreted sub-
jectively; the relative-frequency interpretation is con-
sidered less fundamental. Therefore, statements about
the probability of a parameter assuming certain values
are deemed meaningful.
Bayesian methods, however, should not be considered

entirely satisfactory until the old problem of how to
quantify prior information in terms of prior probabilities
has been resolved; in particular, how to represent a state
of "complete initial ignorance. " For large signals, the
problem of prior probabilities is largely irrelevant; how-
ever, for the very small signals discussed here the prob-
lem may not be brushed aside.
In fact, a considerable step towards resolving this issue

has been taken by Jaynes in his statement of the follow-
ing principle: "in two problems where we have the same
prior information, we should assign the same prior proba-
bilities. " While some would argue otherwise, we regard
the foregoing principle as being both reasonable and con-
structive. Jaynes has shown that in several simple but
important examples it leads to unique assignments of pri-
or probabilities. If, nonetheless, one is inclined to reject
this idea then presumably prior probabilities are to be
considered subjective in a more thoroughgoing sense:
namely, that they are personal assessments of prior infor-

mation. For example, if prior to performing an experi-
ment our only knowledge concerning the value of a pa-
rameter is that it lies within a specified interval it would
be reasonable, from the "personal" viewpoint, to assign
to this information a uniform prior distribution. Indeed,
since the time of Bayes a uniform prior distribution has
been the form most commonly adopted.
In this paper, however, we specifically reject the "per-

sonal" approach as inappropriate for the statistical
analysis of experiments in physics; our point of view is
that of Jeffreys: namely, that the prior probability
should be as "impersonal as possible. " This point of
view, we believe, is in keeping with the established tradi-
tion in the mathematical sciences; indeed, it seems to us
that if we want the assignment of prior probabilities to be
less a matter of individual judgment and more a matter of
"impersonal" mathematics we should follow that tradi-
ition: that is, make a statement of basic principles and
follow through to some ultimate conclusions. This is
what we attempt to do here.
The paper is organized as follows. In Sec. II we discuss

the statistical model we have used for our analysis. In
Sec. III we obtain a unique prior distribution for this
model. Section IV deals with the calculation of the poste-
rior distribution of the signai and its use in making sta-
tistical inferences. In Sec. V we illustrate the use of our
results by reanalyzing some published data. We consider
data from the LENA Collaboration on hadronic decays
of the Y(lS); we look at data on fiavor-changing neutral
currents (FCNC's) from JADE (Ref. 6) and finally we ex-
amine data from the CRISP Collaboration on nn oscilia-
tions in free neutrons. Some concluding remarks are
made in Sec. VI.

II. THE STATISTICAL MODEL

The results of a high-energy physics experiment
searching for new phenomena are typically the number X
of signal plus background events, drawn from a distribu-
tion with unknown rate A, , and an estimate (P, tT) of the
background rate p. Ordinarily, the background estimate
is obtained either from a real control experiment or from
a Monte Carlo simulation. In the first case we obtain an
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estimate B of the background rate pz of the control ex-
periment which, together with the relation ps =ps(p),
leads to an estimate of p. For background rate estimates
derived from a Monte Carlo simulation the situation is a
bit more complicated. Ideally, the error o' quantifies the
magnitude of the systematic uncertainties in the value of
p; in principle, the statistical error can be rendered negli-
gible by running the Monte Carlo code long enough. In
this case the distribution of possible background means
would be incorporated into the overall prior distribution
for the problem. Sometimes, however, data are published
(see, for example, Sec. V B) in which the statistical error
in the Monte Carlo background rate estimate may not be
neglected. This statistical error can be dealt with in pre-
cisely the same manner as for a real control experiment.
We note, however, that this does not preclude the incor-
poration of knowledge of systematic errors into the prior
probability. For example, if it is known that the back-
ground rate lies within a certain interval this information
can be trivially incorporated into the prior probability.
For many real experiments

(P, o )=(8,&8 )/(rtt), (2)

where t is the observation time for the experiment.
If P(N

i
A, , t) is the probability of the result N and

P(B
i ptt, ttt ) the probability to obtain the result 8, then

given that the two experiments are independent, the joint
probability of the results, P(N, B

i
s, t;p, ttt ), is given by

Vs(V) =W
where g is a known constant. The background rate esti-
mate is usually taken to be

2K

S =—g q, lnq;, (4)

which can be resummed as

n =OiGIi:n, =nI
q;lnq; .

If we now assume that within each class of event histories
defined by the set {i:n; =n j the associated probabilities
are identical and that

q;=
say, we can write the entropy as

KS =—g Q„lng„,
n=0

which, with the definition

that is, the probability associated with the class of event
histories in which n events occur, becomes

events occur one at a time and that K is so large that no
more than one event can occur per interval 6t. Eventual-
ly, we shall let K~~. We shall call each sequence of
events in [O,t] an event history. The set of all event his-
tories contains 2 elements. To the ith element of this set
we assign the probability q, . Let ni be the total number
of events within the ith history. The entropy associated
with the distribution {q, I is defined by

P(N 8
i s, t;p, ts)=P(N i

A, , t)P(8 i ps, ts), (3) K K
S =—g P„ln(n!P„)+ g P„ln[K!/(K —n)!] . (8)

where s =A,—p is the unknown signal rate and t8 is the
observation time for the background experiment. It
would be reasonable to assume that the function
P(n

i a, t) is the Poisson distribution and we shall in fact
assume this. However, from a strict Bayesian viewpoint
the probability P(n

i a, t) need have nothing whatsoever
to do with the relative frequency of events. In fact, as we
now demonstrate, the Poisson distribution can be derived
from first principles without appealing to this interpreta-
tion of probability. Our derivation makes use of the prin-
ciple of maximum entropy.
Consider the time interval [O,t]. Let it be partitioned

into K intervals of duration 5t =t/K. We assume that

n =0 n=0

K

g nP„=at .
n=0

(10)

After some simple algebra and making use of Eq. (10)
we can write the second term in Eq. (8) in two parts:

Our problem then is to maximize S subject to the con-
straints

K

g P„=1
n=0

and

K K n —1

g P ln[K!/(K )!]t=tti aKn+(I/K) g P„g ln[(1—'/K) ] .
n=0 n=0 i=0

The second term in Eq. (11) is of O(1/K) and therefore
vanishes in the limit K~00. Applying the maxirnum-
entropy principle, dS= 0, and then taking the limit
K~00 leads to the following set of equations whose
simultaneous solution is required:

g [ln(n!P„)+1]dP„=O, (12)

g dP„=O,
n=0

and

n dP„=O .
n=0

The solution is

(13)

(14)
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—con
P„=Z (co) n!

where
oo —cgn

Z(co)= g
0 n.

(16)

and co is a Lagrange multiplier determined from the con-
straint equation

—3 lnZ =at .
Bco

Imposition of the constraint leads finally to the result

(17)

(18}

Using Eqs. (18) and (1) in the general formula, Eq. (3),
leads to the probability

P(N, B i s, t;p, ttt )= [(s +@)t]
—(s +p)t —gpt~

X(rtpttt) e

which defines our statistical model. The posterior proba-
bility of the signal P(s

i
N, B), that is, the probability dis-

tribution of the signal after the experiment has been per-
formed, is given by Bayes theorem:

P 1V,B s, t;p, t& P s,p
P(s

i
NB)= „"„,(20)P XB s, t;p, t~ P sp

0 0

where the integral in the numerator is over the back-
ground mean p and P(s,p)=H(s, p)ds dp is the prior
probability.

III. PRIOR PROBABILITY
FROM PRIOR IGNORANCE

In the previous section we were able to derive the
direct probability, or likelihood function, P (N, B i s,
t;p, ttt ) from a well-established principle. Unfortunately,
there are no well-established principles for deriving the
prior probability distribution which, as Jeffreys has it,
"will enable the theory to begin. " In particular, there are
no agreed upon principles whereby the form of our prior
probability P (s,p ) can be derived given the following
minimal prior information: the point (s,p) is known to
lie in the space [0, ao )s [0, Oo ).
However, while not firmly established, the proposal by

Jaynes alluded to earlier is a serious attempt to address
this well-known di%culty of the non-"personal" Bayesian
statistics.
Here we apply invariance arguments in the spirit of

Jaynes proposal to deduce the form of the prior probabil-
ity. These arguments are based on the observation that
our vague knowledge concerning the parameters is sup-
plemented by our knowledge of the functional form of the
likelihood function for our experiment. Therefore, we

A, '/p, t-' t' '/p, Q Q'/p,
p,, p,,'/q, t, ' t& '/q, Q& Qa/q

(21)

and

A ~pe /q', t '~ts '/q', Q~Qs /q',
JM,s ~A."/p', t~ '~t" '/p, Q~ ~Q /p

(22}

where p, q, p', and q' can be any set of nonzero numbers.
The transformations given in Eqs. (21) and (22) together
form a three-parameter (non-Abelian) group containing a
two-parameter subgroup defined by Eq. (21) (for details
refer to the Appendix}. Therefore, we expect the form of
the prior probability to be uniquely determined.

know, in principle, the transformations which leave the
likelihood function invariant. Now let us suppose that
two experimenters have exactly the same prior informa-
tion regarding the rate parameters of the likelihood func-
tion; in this case, they know that s and p are non-negative
numbers. Given the vagueness of their prior knowledge
they have no choice but to consider all possible hy-
potheses regarding the magnitude of s and p, and to as-
sign to each hypothesis a prior probability. Following
Jaynes we assume that these experimenters, being ration-
al, must agree on the assignment of prior probabilities.
More precisely: if they have the same prior information
and if they make equivalent hypotheses about the signal
and background rates they must assign the same prior
probability to the particular hypothesis under considera-
tion. Furthermore, since for equivalent hypotheses our
experimenters must compute the same likelihood for a
given experimental outcome the parameters used by one
will be related, by the symmetry transformations, to
those used by the other.
The above considerations suggest the following basic

premise: If, prior to performing an experiment, we know
nothing more than the form of the likelihood function and
the domain in which it is dined then the prior probability
pertaining to this knowledge is invariant with respect to the
symmetry transformations of the likelihood function We.
offer the foregoing as a reasonable point of departure; if
subsequently it is shown to be unreasonable then of
course it should be abandoned. In the meantime, howev-
er, we shall accept it as a kind of postulate; that is, it is
held to be true without proof.
Evidently, our first task is to establish the symmetries,

if any, of the likelihood function P (N, B i s, t;p, t~ }. The
precise form of the symmetry transformations will de-
pend, of course, on the particular pair of parameters we
choose to use. It is convenient to choose those parame-
ters in terms of which the symmetries of the likelihood
function are most clearly exhibited. For our likelihood
function the symmetry transformations take their sim-
plest form when expressed in terms of the rates A, and pz.
The transformations could also be given in terms of s and
p; however, their form would be more complicated.
We first introduce the rate parameters Q =N/t and

Q& B/tz. It is ev——ident that the likelihood function is
invariant with respect to the transformations
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In accordance with our basic premise the prior proba-
bility must satisfy the constraints

and

P(A, ', ptt )=P(k,ptt, ) (23}

P(A,",p'ti)=P(A, ,ps ) .

If we define the density f (A, ,ps ) by

P ( A,,ptt }=f (A, ,pa )d A, 1ptt

(24}

we obtain from Eqs. (23) and (24), respectively, the func-
tional equations

and

S ef 4 ~ cps }=f(~ ps } (25)

P'e'f(J'pB '~ ~) f(~ pB)
The solution of Eqs. (25) and (26) is

(26)

1f(~ pa)
kgb'

(27}

Without loss in generality, we can set the constant of pro-
portionality to unity whereupon the prior probability
takes the form

dk dpi'P(A, ,pa }= p
(28)

which, when expressed in terms of the parameters s and
p, recalling that k =s +p and that pz ——gp, becomes

P(s,p) = ds dp
(s +p)p (29}

Equation (29) is the basic result of this paper. It is im-
portant to note that had we used, from the start, the pa-
rameters s and p or any other pair of parameters for that
matter we would still have arrived at Eq. (29), albeit via a
more involved derivation. Indeed, if this were not the
case the result would be mathematically inconsistent. It
is a direct consequence of our basic premise. One might
balk at this result; some will consider it to be decidedly
nonintuitive. If so, they must reject our basic premise
and replace it with something else. One alternative prem-
ise is provided by the "personal" interpretation: the pri-
or probability should reAect an individual's personal as-
sessment of prior information. We contend, however,
that if we accept this premise then we forego all possibili-
ty of agreement on the form of the prior probability dis-
tribution; for, being a rnatter of individual judgment,
every prior probability would be valid a priori. Yet it is
precisely this lack of some basic principle for assigning
prior probabilities, this apparent invitation to arbitrari-
ness, rather than any philosophical disagreements about
the meaning of probability that has engendered so much
controversy. Not surprisingly, this has hampered the in-
troduction of Bayesian methods in physics and other
fields which presume to deal with "objective" knowledge
and w'hich therefore eschew the use of overly subjective
methodologies.

What is the content of Eq. (29)? The latter shows that
our prior hypotheses regarding $ and p can be divided
into two classes: hypotheses which are "nonfactorizable"
in the sense that neither s nor p can be assigned prior
probabilities independently of one another, and hy-
potheses which allow the specification of a prior probabil-
ity for the signal independently of the assumed back-
ground rate; that is, hypotheses which are "factorizable. "
When the rates are assumed to be rough1y comparable we
can make only "nonfactorizable" hypotheses regarding s
and p; when p &&s we should assign equal probabilities to
the "nonfactorizable" hypotheses which differ only in the
assumed signal rate. Roughly speaking, if we hy-
pothesize that the background rate is very large com-
pared with the signal rate then every prior assumption re-
garding the magnitude of the latter should be regarded as
equally plausible. If, on the other hand, we assume that
p&&s the prior probability factorizes in terms of these
parameters and we can then assign prior probabilities for
the signal rate independently of the background rate, and
vice versa.
We do not presume to justify Eq. (29} with the above

comments; our purpose is merely to suggest that an intui-
tive understanding of it is possible.

I (B +i )I[( I+g)'i!]
N

g I'(B +j ) I[(l+ri)'j!]
(3 I)

IV. MAKING INFERENCES ABOUT THE SIGNAL

For the proponents of Bayesian statistics its great mer-
it is the availability of a probability distribution which
quantifies the degree of belief to be associated with
different values of an unknown parameter and the fact
that this distribution can be systematically modified to
take account of relevant new information. The following
criticism is sometimes leveled against the use of a proba-
bility distribution over a parameter space: that on physi-
cal grounds it is absurd to contemplate a distribution of
values for certain quantities, for example, the speed of
light in vacua, or the rest mass of an electron. However,
we have already alluded to the fact that probability, ac-
cording to Bayesians, need have no direct connection
with relative frequencies; therefore, the fact that we may
choose to represent our state of knowledge by a finite-
width probability distribution makes no statement about
whether or not the quantity itself assumes a distribution
of values. A quantity can, of course, have a unique value;
the point is that because our knowledge of this value is
imprecise the probability distribution we use to describe
our knowledge will have a finite width.
In this section we would like to infer certain statements

about the magnitude of the signal in our model experi-
ment. First we must calculate the posterior probability
P(s

~
X,B}. Following the method outlined in Ref. 9 we

obtain
N —1

P(s
~
N, B)=d(st)e "(st) ' g x, l[I (N —i)(st)'],

i =0
(3O)

where
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As our knowledge of the background rate p improves,
that is when B and g~ao in such a way that the ratio
8/g~pOt where p0 is the true background rate, x; will
approach the limit

(pot)'Ii!
X.= E—1

(pot)'Ij!
j =0

(32)

We shall make two kinds of inference using P (s
~
N, B): a

point estimate s of the signal and an interval estimate
[O,s] containing the true value of the signal rate with
probability P. The upper bound s is the 100P%-
confidence-level (C.L.) upper limit on the signal rate s.
The quantities s and s are defined, respectively, by

s= sP s ¹8 (33)
0

and the implicit formula

P= f'P(s ~!NB),
and are given, respectively, by

N —1s= N—
i =0

(34)

(35)

and
N —I (st)i N —i—i

P=l —e "g ., g x, .
i =0 ' j=O

(36)

rl =Pl(o t),
8 =gpt . (37)

The derivation of our formulas for s and s implicitly as-
sumes that both ¹ and 8 are & 0. However, we can con-
tinue the functions to 8=0 by taking the limit of x, as8~0. We obtain

1 ifi =0,
0 otherwise . (38)

Therefore, for the case 8=0 the formulas simplify to

s =N/t (39)

and

The above formulas present a coherent solution within
the non-"personal" Bayesian framework to the problem
of estimating the magnitude of a small signal masked by
background. The utility of these expressions lies in the
fact that the idealized experiment to which these expres-
sions refer is a reasonably good model of some real-life
experiments. As examples we cite experiments searching
for neutron-antineutron oscillations or proton decay. '
In some cases the background rate estimate is not de-

rived from an event count 8. Nonetheless, we may still
use Eqs. (35) and (36) approximately by deriving an
effective scale factor and an effective event count in the
following obvious manner:

which we note are independent of q. What of the case
N=O? Well, in this case our prior distribution, Eq. (29),
gives rise to a posterior probability distribution which
cannot be normalized. As a consequence we cannot
make any statements which involve absolute probabili-
ties; only statements involving the relative probabilities of
different hypotheses are possible. Therefore, for N=O
there is no formal solution for the upper limit. This
asymmetry 'between the cases N=O and ¹&0is a well-
known result of the Jeffreys-Jaynes prior probability, to
which Eq. (29) reduces in the absence of background, and
is regarded by some as a difficulty. However, there is an
intrinsic asymmetry between the two sets of outcomes: if
N & 0 we know with probability one that the rate
A,
—= (N ) It is nonzero; if we obtain N= 0 we cannot make

such an assertion. Perhaps, the lack of a formal upper
limit for ¹=0is a reAection of this basic asymmetry. In
any case, we can always assign to the case ¹=0the upper
limit for ¹ 1. That this is always possible, and also con-
sistent, is clear from the following observation:
s(N, B)&s(N+1,B); therefore, if we know with 90%
confidence that s&2.3, say, for ¹=1,then we certainly
know with at least that degree of confidence that s & 2.3 if
instead ofN=1 we had obtained the result ¹=0.
To summarize, given the data (N, P,8):(N, B,rt) we-

can, using Eqs. (35) and (36), make some plausible infer-
ences about the magnitude of the signal rate. Moreover,
if the data are binned these formulas may be applied to
each bin.

V. APPLICATIONS

As an illustration of the use of the above equations we
shall consider the published data from three experiments:
the search for hadronic decays of the f(lS) by the LENA
group; the search for Aavor-changing neutral currents
performed by the JADE Collaboration at DESY and the
nn experiment carried out by the CRISP Collaboration at
the ILL reactor in Grenoble.

A. LENA: hadronic decays of the T(1$)
Our first example is taken from the LENA Collabora-

tion which has searched for the decay f(1S)~p m. at the
DESY storage ring DORIS. This experiment serves as
an example of one in which the background was deter-
mined by measurement rather than by calculation. From
a data sample, corresponding to an integrated luminosity
of 701 nb ', obtained at the Y resonance 2 candidate
events were found with opening angles greater than 11.5 .
In the continuum about the resonance 5 events were
found within a data sample of 1199 nb '. The back-
ground level was estimated by normalizing the integrated
ed luminosity of the continuum data to that of the data
collected at the Y. Evidently, this experiment is well de-
scribed by our statistical model with %=2, 8=5, and
q=1199I701, that is, 1.71. The associated upper limit is
obtained from Eq. (36). The result is 3.0 events (90%
C.L.) and leads to a branching ratio of

B(r-p'~') =
37.7

(40) =8X10 % (90% C.L. ) . (41)
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TABLE I. Point estimates of the signal rate s =A.—IM, where At=. (N ) and pt = (B).

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

0.00
1.00
1.67
2.43
3.27
4.16
5.10
6.06

0.00
1.00
1.50
2.09
2.77
3.53
4.35
5.23

0.00
1.00
1.40
1.88
2.43
3.06
3.77
4.54

0.00
1.00
1.33
1.73
2.19
2.72
3.32
3.99

0.00
1.00
1.29
1.62
2.01
2.46
2.98
3.56

0.00
1.00
1.25
1.54
1.88
2.26
2.71
3.21

0.00
1.00
1.22
1.48
1.77
2.11
2.50
2.93

The above result differs little from that quoted in Ref. 5;
however, here the result takes account of the Poisson na-
ture of the data while the LENA group makes use of
standard Gaussian statistics, a procedure which for so
few events is inappropriate.

B(b(b)~s(s)p+p, )=
6.54

which leads to the upper litnit 0.5% (90% C.L.).

C. CRISP: nn oscillations

(42}

B. JADE: Flavor-changing neutral currents

Here we discuss an experiment in which the back-
ground level is estimated from a Monte Carlo simulation.
The JADE Collaboration has searched for flavor-
changing neutral currents in the decay of the b quark.
The analysis was based on a sample of 21494 hadronic
events at a mean center-of-mass energy of 34.6 GeV. A
total of 138243 hadronic events were simulated which
were then passed through the same trigger and analysis
chain as used for the real data, leaving 106926 events.
Therefore, for this experiment g = 106926/21 494, that
is, 4.97. Cuts were applied to select dimuon events from
the decays b (b )~s (s )p+IM where here s stands for the
strange quark. In particular, a cut, 20'&5 & 80', on the
dimuon opening aggle 5 was imposed to enhance the sen-
sitivity to an FCNC signal. Three opposite-sign, same-jet
dimuon events were found with an overall eSciency of
0.167. The Monte Carlo simulation yielded 30 back-
ground events, that is, (P,&)=(6.0, 1.1)lt events when
scaled down by g.
Again, this experiment may be analyzed by the method

explained above. The results (N, B,g) =(3,30,4.97) imply
an upper limit on a possible FCNC signal in the JADE
experiment of 3.1 events (90% C.L.). For this experiment
the branching ratio may be expressed as

In the CRISP experiment the background level was
known with about the same degree of precision as the
combined level of signal and background. We may
characterize this situation by taking rt=l. (In fact,
g=0.97 for this experiment. It is the ratio of the obser-
vation time for the real experiment to that of the control
experiment. } Owing to the magnetic properties of the
neutron it is possible to switch off the oscillation effect by
the application of a suitable magnetic field. By this
means a direct measurement of the background level can
be made. From control experiments 7 background events
were found while the actual experiment yielded 3 events.
This result, of course, is statistically perfectly reasonable;
however, within the framework of "classical" statistics it
does present a problem. " The Bayesian solution on the
other hand is straightforward and is again given by
Eq.(36).
Table I shows some results for st when g=1. The cor-

responding 90%-C.L. upper limits are listed in Table II.
For this experiment the nn mixing time ~„„may be writ-
ten as

—10 sec,1.48
nn ~t (43)

which, with the upper limit of 3.33 antineutron events,
corresponding to the results (N, B,g)=(3,7, 1) gives the

TABLE II. Upper limits for the signal rate s =X—p, at 90%%uo C.L., where kt = (N ) and pt = (8 ).
For the case N=O, refer to Sec. IV of the text.

2.30
3.89
5.32
6.68
7.99
9.28
10.53

2.30
3.51
4.75
5.99
7.24
8.49
9.72

2.30
3.27
4.32
5.43
6.59
7.76
8.95

2.30
3.11
4.01
4.99
6.03
7.12
8.24

2.30
3.00
3.77
4.63
5.57
6.56
7.60

2.30
2.91
3.59
4.35
5.18
6.08
7.04

2.30
2.84
3.44
4.12
4.87
5.68
6.55

2.30
2.78
3.33
3.93
4.60
5.34
6.14
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lower limit 0.8X 10 sec for the neutron-antineutron mix-
ing time.
We note the absence, in both tables, of negative values.

This, of course, is to be expected; the parameter space has
been restricted to the positive quadrant. Therefore, nega-
tive values cannot occur. This is in striking contrast to
the "classical" calculation" which, for values of 8
sufficiently greater than N, will eventually lead to nega-
tive upper limits. In the "classical" case this reflects the
fact that the unbiased estimate of the signal rate is given
by s =(N B)l—t, which can of course be negative. How-
ever, for values of N &&8 the Bayesian and classical cal-
culations give essentially the same numerical results.

VI. CONCLUSIONS

Many of the commonly used statistical techniques are
valid strictly in the limit of large signals and samples. As
a consequence the analysis of small signals using the stan-
dard methods is rendered difficult. Indeed, it is easy to
think of statistical problems in high-energy physics for
which there are no satisfactory solutions using standard
methods. Bayesian methods offer a simple solution to
this and related problems. For a recent interesting appli-
cation of Bayesian statistics in high-energy physics we
cite the methods discussed in Ref. 12. However, granted
the acceptance of the subjective interpretation of proba-
bility one point of contention still remains: the manner in
which prior probabilities are to be assigned. We believe
that by accepting the premise that the prior probability
should be invariant with respect to the symmetry trans-
formations of the likelihood function some progress can
be made towards eliminating what critics perceive as the
arbitrariness of Bayesian statistics with regard to the as-
signment of prior probabilities. This premise pertains to
the case in which the form of the likelihood function and
the domain in which its parameters are defined is the only
prior information we have.
We have tried to present a coherent Bayesian analysis

of small signals buried in background noise. In particu-

lar, granted our premise, we have obtained a unique prior
distribution for the problem addressed. This prior distri-
bution differs from the divergent form tentatively sug-
gested in Ref. 9. We regard the form given in that paper
as untenable because it leads to an unnormalizable poste-
rior probability for all values of N and it is incompatible
with our basic premise. On the other hand it is clear
from the results presented in that paper that use of a uni-
form prior probability distribution ds dp, will avoid the
first problem; however, for the model used here such a
prior probability is again inconsistent with the principle
of prior probability invariance under the symmetry group
of the likelihood function.
The results obtained in this paper are directly applic-

able to real experiments; a few examples from the litera-
ture were discussed. A particular advantage of our
method is that the uncertainty in the background esti-
mate can be accounted for in a manner which is both
simple and systematic. As a consequence the results from
different experiments can be compared without difficulty.
From a practical viewpoint the primary difference be-
tween our Bayesian results and those from a more ortho-
dox approach is the explicit elimination in the former
case of inferences that might be construed as unphysical,
for example, negative values for the signal. However, it
should be recognized that inferences based on Bayesian
statistics are interpreted differently from those based on
more orthodox statistical approaches. '
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APPENDIX

If we construct a column vector from the quantities A, ,
t ', Q, ps, ta ', and Qs, Eqs. (21) and (22) define the
transformation matrix

Tp

0
0

A (p, q, r)=
0
0

7'P

0
0

q —rq
0

Tp

0
0

v
0

rq
0
0

p v
0

rq
0

p v
0
0
rq

(44)

where
~ p ~

and
~ q ~

&0 and r is a discrete parameter with values 0 and 1. Given this matrix representation it is
straightforward to verify that

3 (p, q, 1)A (p', q', 1)= 3 (pp', qq', 1), A (p, q, 1)A (p', q', 0)= A (pp', qq', 0),

A (p, q, 0)A (p', q', 0)= A (pq', qp', 1),
(45)

thereby demonstrating that the infinite set of elements I A (p, q, r)I form a three-parameter non-Abelian group with
A ( 1, 1, 1) as the identity element.
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