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Bayesian inferences in high energy physics often use uniform prior distributions for parameters about

which little or no information is available before data are collected. The resulting posterior distributions

are therefore sensitive to the choice of parametrization for the problem and may even be improper if this

choice is not carefully considered. Here we describe an extensively tested methodology, known as

reference analysis, which allows one to construct parametrization-invariant priors that embody the notion

of minimal informativeness in a mathematically well-defined sense. We apply this methodology to general

cross section measurements and show that it yields sensible results. A recent measurement of the single-

top quark cross section illustrates the relevant techniques in a realistic situation.
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I. INTRODUCTION

The Bayesian approach [1] to inference plays an increas-
ingly important role in particle physics research. This is
due, in part, to a better understanding of Bayesian reason-
ing within the field and the concomitant abating of the
frequentist/Bayesian debate. Moreover, the small but
growing number of successful applications provide con-
crete examples of how the Bayesian approach fares in
practice.

In spite of these successes the specification of priors in a
principled way remains a conceptual and practical hurdle.
In the so-called subjective Bayesian approach [2], one is
invited to elicit the prior based on one’s actual beliefs about
the unknown parameters in the problem. If one has well-
understood information, based, for example, on subsidiary
measurements or simulation studies, one can encode this
partial information in an evidence-based prior [3]. Such
priors generally occasion little or no controversy. On the
other hand, if one knows little about a given parameter, or
if one prefers to act as if one knows little, then it is far from
clear how one ought to encode this minimal information in
a prior probability.

Since there is, in fact, no unique way to model prior
ignorance, a viewpoint has evolved in which this lack of
knowledge is represented by one’s willingness to adopt a
standard prior for certain parameters [4], just as one has
adopted a standard for quantities such as length and
weight. In this spirit, our field adopted as a convention a
uniform (flat) prior for unknown cross sections and other

parameters (see, for example, Ref. [5]), mainly because
this prescription is simple to implement and seems to
embody Laplace’s principle of insufficient reason.
Unfortunately, uniform priors are both conceptually and
practically flawed. The conceptual difficulty is with their
justification: lack of knowledge about a parameter � im-
plies lack of knowledge about any one-to-one transform �0
of �, and yet a prior distribution that is uniform in � will
not be so in �0 if the transform is nonlinear. The practical
problem is that careless use of uniform priors can lead to
improper posteriors, that is, posteriors whose integrals are
infinite and which can therefore not be used to assign
meaningful probabilities to subsets of parameter space.
An example of this pathology is found in a common
method for reporting the exclusion of a new physics signal,
where one estimates an upper limit from a posterior distri-
bution for the signal’s production cross section. When
constructed from a Poisson probability mass function for
the observations, a flat prior for the signal cross section,
and a truncated Gaussian prior for the signal acceptance,
this posterior is actually improper. However, for small
acceptance uncertainties the divergence of the upper limit
is often concealed by the inevitable truncation of numerical
computations [6].
The specification of priors that encode minimal infor-

mation is of such importance in practice that a large body
of literature exists describing attempts to construct priors
that yield results with provably useful characteristics.
These priors are typically arrived at using formal rules.
In this paper, therefore, we refer to them as formal priors
[7] to distinguish them from evidence-based priors. Many
such formal rules exist [4]. In this paper we study, and then
recommend, a rule which is arguably the most successful:
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that developed by Bernardo [8] and Berger and Bernardo
[9–11]. Formal priors constructed according to the
Bernardo-Berger rule are called reference priors, a some-
what unfortunate name given that the term reference prior
is sometimes used as a synonym for what we have called a
formal prior.

Reference priors have been shown to yield results with
several desirable properties, all of which should appeal to
particle physicists. Therefore, in principle such priors
could be a foundation for Bayesian inference in particle
physics research. However, reference priors and the asso-
ciated methods collectively referred to as reference analy-
sis [12,13] have yet to enter the field in a significant way.
The purpose of this paper is to initiate this process by
applying the Bernardo-Berger method to a familiar but
important class of problems, namely, that of calculating
posterior densities for signal cross sections.

In the next section we describe the general goals of
reference prior construction and show how these are im-
plemented via the concept of missing information. For
simplicity we limit that discussion to one-parameter prob-
lems. Section III then considers the treatment of nuisance
parameters about which prior information is available.
Examples of such parameters include detector calibration
constants, background contaminations, geometrical accep-
tances, and integrated luminosities. We describe two meth-
ods for handling these parameters, depending on the type
of information that is available about them. These methods
are then applied to counting experiments with uncertain
background contamination and effective luminosity. In the
simplest cases we have obtained analytical expressions for
the marginal posterior for the quantity of interest. For the
general case we have developed a numerical algorithm.
Some appealing properties of these posteriors are exam-
ined in Sec. IV. In Sec. V the reference prior methodology
is applied to a recent measurement of the production cross
section for single-top quarks at the Tevatron. Final com-
ments are presented in Sec. VI.

II. REFERENCE PRIORS

In 1979, Bernardo [8] introduced a formal rule for con-
structing what he called a reference prior. The goal was to
construct a prior which, in a sense to be made precise,
contained as little information as possible relative to the
statistical model under consideration. By statistical model
he meant a representation of the entire experimental de-
sign, including the probability distribution of the data, the
sampling space, and the stopping rule. Hence, by construc-
tion reference priors depend on all these aspects of a
statistical model, and so will inferences derived from
data with the help of a reference prior. This may seem to
violate the so-called likelihood principle [14], according to
which all the information about unknown model parame-
ters obtainable from an experiment is contained in the
likelihood function, i.e. the probability distribution of the

data, evaluated at the observations and viewed as a function
of the parameters. While this is formally true, it should be
kept in mind that the likelihood principle applies after data
have been observed, whereas reference priors are con-
structed at the experimental design stage. Their purpose
is to approximate a consensus of opinions that is suitable
for scientific communication. This is generally unproble-
matic in large-sample situations, where posterior infer-
ences are dominated by the likelihood function. In small
sample cases, however, results obtained with reference
priors should be considered preliminary, and a careful
study should be conducted of the degree to which infer-
ences about the physics model underlying the observations
can be trusted. This can be achieved by examining the
sensitivity of the results to changes in the prior and sub-
sequently assessing the need for additional observations.
Reference priors have several desirable properties, in-

cluding
(1) generality: a well-defined algorithm exists to create

a reference prior for almost any type of estimation
problem, and the resulting posterior is proper;

(2) invariance: given a one-to-one map from a parame-
ter � to a parameter �, applying the reference prior
construction separately to � and � yields posteriors
that are related by the correct transformation law,
�ð� j xÞ ¼ �ð� j xÞj@�=@�j;

(3) sampling consistency: the posterior densities from
an ensemble of experiments tend to cluster around
the true values of the parameters; and

(4) coherence: inferences derived from reference priors
avoid marginalization paradoxes.

Marginalization paradoxes [15] arise in multiparameter
problems when a posterior density can be calculated in
different ways that ought to give the same answer but do
not (see Fig. 1).
This incoherence does not happen with subjective or

evidence-based priors because these priors are always
proper. With formal priors, however, it can only be avoided
by allowing the joint prior for all the parameters in a given
statistical model to depend on the quantity of interest. This
is in fact what the reference prior construction does. For a
simple illustration, consider n measurements xi from the
normal model with unknown mean � and standard devia-
tion �. The likelihood function is

pð ~x j �;�Þ ¼ Yn
i¼1

e�ð1=2Þððxi��Þ=�Þ2ffiffiffiffiffiffiffi
2�

p
�

¼ e�ððn�1Þ=2Þðs=�Þ2�ðn=2Þðð �x��Þ=�Þ2

ð ffiffiffiffiffiffiffi
2�

p
�Þn ; (1)

where �x ¼ P
n
i xi=n and s2 ¼ P

n
i ðxi � �xÞ2=ðn� 1Þ. When

� is the quantity of interest, the reference prior derived
from this likelihood is 1=�. Restricting the remaining
calculations to the case n ¼ 2 for convenience, the joint
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reference posterior for � and � is then

�ð�;� j ~xÞ ¼
ffiffiffi
2

p
s

��3
e�ð1=2Þðs=�Þ2�ðð�� �xÞ=�Þ2 : (2)

Integrating out � yields the marginal � posterior, which is
a Cauchy distribution with location parameter �x and scale

parameter s=
ffiffiffi
2

p
. Suppose, however, that our interest lies in

the standardized mean � ¼ �=�. In a nonreference ap-
proach one would perform the transformation ð�;�Þ !
ð�;�Þ in Eq. (2) and integrate out � in order to obtain the
marginal � posterior. The latter only depends on the data

through the statistic t � ffiffiffi
2

p
�x=s:

�ð� j ~xÞ ¼ e�ð�2=ð1þt2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ t2Þp �

1þ erf

�
t�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
��

¼ pð� j tÞ;

(3)

where erf is the error function. Furthermore, the sampling
distribution of t turns out to depend on � only and is a
noncentral Student’s t distribution for one degree of free-
dom and with noncentrality parameter �:

pðt j �Þ ¼ e��2

�ð1þ t2Þþ
�te�ð�2=ð1þt2ÞÞffiffiffiffi
�

p ð1þ t2Þ3=2
�
1þ erf

�
�tffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
��

:

(4)

It is clear that there exists no prior (no function of � only)
that, multiplied by the likelihood (4), leads to the posterior
(3). Hence the marginalization paradox: someone who is
only given the data value of the statistic t will be able to
make inferences about the parameter �, but these infer-
ences are guaranteed to disagree with those previously
made by the Bayesian who had access to the full data
set. Resolution of this paradox hinges on the realization
that lack of information about � is not the same as lack of
information about �. Therefore, the choice of which quan-
tity is of interest must be done before calculating the prior.
Since reference priors are derived from the likelihood
function, the latter must first be expressed in terms of the
relevant parameters, � and �:

pð ~x j �; �Þ ¼ e�ððn�1Þ=2Þðs=�Þ2�ðn=2Þðð �x=�Þ��Þ2

ð ffiffiffiffiffiffiffi
2�

p
�Þn : (5)

Applying the reference algorithm to this likelihood while
treating � as the quantity of interest yields the prior

�ð�;�Þ ¼ 1=ð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2=2

p Þ, which is very different from
the prior 1=� obtained by treating � as the quantity of
interest. The resulting reference posterior suffers no mar-
ginalization problems. Further details about this example
can be found in Refs. [8,12].
Our discussion of marginalization also helps to clarify

the behavior of reference posteriors under transformations
in the multiparameter setting. Reference posteriors are
invariant under one-to-one transformations of the parame-
ter of interest but not under transformations that redefine
the parameter of interest by mixing in one or more nui-
sance parameters. However, redefining the nuisance pa-
rameters is permitted. Suppose, for example, that ’ is
the parameter of interest and � the nuisance parameter(s),
and consider an invertible transformation of the form
ð’; �Þ ! ð’; �Þ, where � is a function of both ’ and �.
Then the reference posterior for ’ is unchanged by the
transformation.
Reference priors on unbounded parameter spaces are

usually improper, which invalidates the application of
Bayes’ theorem. To circumvent this problem one introdu-
ces a nested sequence of compact subsets �1 � �2 � � � �
of the parameter space �, such that �‘ ! � as ‘ ! 1.
Given an improper prior �ð�Þ, its restriction to �‘ will be
proper, so that Bayes’ theorem can be applied to construct
the corresponding restricted posterior �‘ð� j xÞ. The unre-
stricted posterior for the entire parameter space is then
defined by the limit of the �‘ð� j xÞ as ‘ ! 1. The prac-
tical justification for this procedure is that one often knows
the shape, but not the size, of the physical region of
parameter space where the prior has nonzero weight. As
this size is typically very large, the limiting posterior can
be viewed as an approximation to the posterior on the
physical region.

FIG. 1. Let ~x be a data set modeled by the probability density pð ~x j �;�Þ, where � and � are unknown parameters, and consider the
following two paths to a posterior density for �. In path 1, we use a formal prior �F1ð�;�Þ to construct the joint posterior for � and �
and then integrate out �. Suppose that the result of this operation only depends on the data ~x through the statistic t; this gives us
�1ð� j tÞ. For path 2, assume further that the sampling distribution of t only depends on �. We can then directly construct a posterior for
�, say, �2ð� j tÞ. A marginalization paradox occurs if �1ð� j tÞ � �2ð� j tÞ regardless of the choice of prior �2ð�Þ in path 2.
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Interestingly, the limiting posterior can also be obtained
by direct, formal application of Bayes’ theorem to the
improper prior �ð�Þ, provided the marginal distribution
of the data,

mðxÞ �
Z

pðx j �Þ�ð�Þd�; (6)

is finite. It can then be shown that the restricted posteriors
�‘ð� j xÞ converge logarithmically to their limit �ð� j xÞ:

lim
‘!1

D½�ð� j xÞ; �‘ð� j xÞ� ¼ 0; (7)

where

D½pð�Þ; qð�Þ� �
Z

qð�Þ logqð�Þ
pð�Þ d� (8)

is the Kullback-Leibler divergence between pð�Þ and qð�Þ.
This divergence is a parametrization-independent, non-
negative measure of the separation between two densities;
it is zero if and only if the densities are identical.
Unfortunately, pointwise logarithmic convergence is not
enough to avoid inferential inconsistency in some special
cases [16], so that a stronger form of convergence is
needed, expected logarithmic convergence:

lim
‘!1

EmfD½�ð� j xÞ; �‘ð� j xÞ�g ¼ 0; (9)

where the expectation is taken with respect to the marginal
density mðxÞ.

The above discussion motivates the following terminol-
ogy [16]. Given a statistical model on a parameter space�,
a standard prior is a strictly positive and continuous func-
tion on � that yields a proper posterior. A permissible
prior is a standard prior for which the posterior is the
expected logarithmic limit of a sequence of posteriors
defined by restriction to compact sets.

A. The concept of missing information

Reference priors make use of the notion of expected
intrinsic information. For one observation from a model
pðx j �Þ, the expected intrinsic information about the value
of � when the prior is �ð�Þ is given by the functional

If�g ¼ EmfD½�ð�Þ; �ð� j xÞ�g: (10)

The more informative the observation, the greater the
expected separation between the posterior and the prior.
The larger this separation, the greater the expected intrinsic
information If�g. Thus, If�g measures the amount of
information about the value of � that might be expected
from one observation when the prior is �ð�Þ.

Suppose next that we make k independent observations
xðkÞ ¼ fx1; x2; . . . ; xkg from the model pðx j �Þ. The defini-
tion of expected intrinsic information can be generalized to
include all k observations:

Ikf�g ¼ EmfD½�ð�Þ; �ð� j xðkÞÞ�g; (11)

where the expectation is a k-dimensional integral over xðkÞ
weighted by

mðxðkÞÞ �
Z

pðxðkÞ j �Þ�ð�Þd�¼
Z �Yk

i¼1

pðxi j �Þ
�
�ð�Þd�:

(12)

As the sample size k grows larger, one expects the amount
of information about � to increase, and in the limit k ! 1,
the true value of � would become exactly known. In this
sense, the limit I1f�g � limk!1Ikf�g represents the miss-
ing information about � when �ð�Þ is the prior. This
concept of missing information is central to the construc-
tion of reference priors.

B. Reference priors for one-parameter models

The goal of reference analysis is to construct a prior that
maximizes the missing information. This maximization
cannot be done directly, however, because I1 typically
diverges. To avoid this problem, one first constructs the
prior �kð�Þ that maximizes Ik and then takes the limit of
�kð�Þ as k ! 1. Additional care is required when the
parameter space � is unbounded, since in that case the
prior that maximizes Ik is often improper, and Ik is un-
defined for improper priors. The solution is to define
reference priors via their restrictions on arbitrary compact
subsets�‘ of�. Thus one is led to the formal definition of
a reference prior for � as any permissible prior �Rð�Þ that
satisfies the so-called maximizing missing information
(MMI) property, namely, that

lim
k!1

½Ikf�R;‘g � Ikf�‘g� � 0 (13)

for any compact set �‘ and candidate prior �ð�Þ, where
�R;‘ and �‘ are the renormalized restrictions of �R and �
to �‘. A candidate prior is a standard prior that incorpo-
rates any prior knowledge about �.
A key result is the following constructive definition of

the reference prior �Rð�Þ [16]:

�Rð�Þ ¼ lim
k!1

�kð�Þ
�kð�0Þ ;

with �kð�Þ ¼ exp

�Z
pðxðkÞ j �Þ

� ln

�
pðxðkÞ j �Þhð�ÞR
pðxðkÞ j �Þhð�Þd�

�
dxðkÞ

�
;

(14)

where �0 is an arbitrary fixed point in �, hð�Þ is any
continuous, strictly positive function, such as hð�Þ ¼ 1,
and pðxðkÞ j �Þ ¼ Q

k
i¼1 pðxi j �Þ is the probability model

for a sample of k independent observations. We emphasize
that this constructive definition only guarantees that the
MMI property (13) is satisfied. The permissibility part of
the reference prior definition must be separately verified.
However, the proponents of reference priors view the MMI
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property as considerably more important than permissibil-
ity [16] and also believe that it would be highly unusual for
a prior satisfying the MMI property to fail permissibility
[11] (counterexamples are known, but they are rather
exotic).

A further useful result that we shall exploit is that, when
certain regularity conditions are met—essentially those
that guarantee asymptotic normality of the posterior—the
reference prior for models with one continuous parameter
reduces to the well-known Jeffreys prior [4],

�Rð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
�
� d2

d�2
lnpðx j �Þ

�s
; (15)

where the expectation is taken with respect to the sampling
model pðx j �Þ. In general, the analytical derivation of
reference priors can be extremely challenging. However,
Eq. (14) is amenable to numerical integration [16].

We emphasize that the definition and results described in
this section apply only to the case where the model of
interest depends on a single parameter. A generalization to
the multiparameter case has been formulated and shown to
have the properties listed at the beginning of Sec. II [12].
We shall not describe it here, however, except for when
evidence-based priors are specified for the additional pa-
rameters. This is a very common situation in high energy
physics and will be discussed next.

III. NUISANCE PARAMETERS

The reference prior algorithm described in Sec. II B
pertains to models containing no nuisance parameters. In
practice, however, every nontrivial problem must contend
with such parameters and the reference prior algorithm
must be generalized accordingly. In this paper we restrict
our attention to nuisance parameters for which partial
information is available, which is often the case in practice.

Depending on the type of partial information that is
available, there are two plausible ways one might choose
to incorporate nuisance parameters � into the calculation
of the reference priors for a parameter of interest � [17]:
Method 1: Assume that we are given a marginal
prior �ð�Þ for the nuisance parameters; compute the con-
ditional reference prior �Rð� j �Þ for the interest parame-
ter given a fixed value of �; the full prior is then
�ð�;�Þ ¼ �Rð�j�Þ�ð�Þ.
Method 2: Assume that we are given a conditional prior
�ð� j �Þ for the nuisance parameter given the interest
parameter; marginalize the probability model pðx j �;�Þ
with respect to � in order to obtain pðx j �Þ ¼ R

pðx j
�;�Þ�ð� j �Þd�, and compute the reference prior �Rð�Þ
for the marginalized model; the full prior is then�ð�;�Þ ¼
�ð� j �Þ�Rð�Þ.
In many high energy physics measurements there are often
sound reasons for assuming that the nuisance parameter is
independent of the parameter of interest. Information about

a detector energy scale, for example, is typically deter-
mined separately from the measurement of interest, say, of
a particle mass, and is therefore considered to be indepen-
dent a priori from one’s information about the particle’s
mass. When an experimenter is willing to make this as-
sumption, he or she can declare that �ð� j �Þ ¼ �ð�Þ and
use method 2. When this assumption does not seem fully
justified, and it is too difficult to elicit the � dependence of
�ð� j �Þ, then it will seem preferable to use method 1,
which only requires knowledge of the marginal prior�ð�Þ.
When one is unsure of which method to use, one should use
both and treat the results as part of a test of robustness. An
important practical advantage of method 1 is that the
conditional reference prior is computed once and for all,
for a given model, and can be used with any evidence-
based prior for the nuisance parameters. In contrast, for
method 2 the reference prior must be computed anew every
time the priors for the nuisance parameters change. On the
other hand, since method 2 reduces the problem to one
involving a single parameter, the reference prior algorithm
reduces to Jeffreys’ rule (15), which is typically easier to
implement.
In the next section we introduce the basic model studied

in this paper and follow with the application of methods 1
and 2 to that model.

A. The single-count model

A very common model for high energy physics mea-
surements is the following. A number of events N is
observed by some apparatus, and it is assumed that N is
Poisson distributed with mean count ��þ�, where � is
the rate of a physics signal process, typically the cross
section, which we detect with an effective integrated lumi-
nosity �—that is, the integrated luminosity scaled by the
signal efficiency—and � is a background contamination.
Thus, � is the parameter of interest, whereas � and � are
nuisance parameters for which we usually have partial
information. For physical reasons none of these three
parameters can be negative. We write the likelihood for
this model as

pðn j �; �;�Þ ¼ ð��þ�Þn
n!

e�����;

with 0 � �<1 and 0< �;� <1:

(16)

Information about � and� usually comes from a variety of
sources, such as auxiliary measurements, Monte Carlo
simulations, theoretical calculations, and evidence-based
beliefs (for example, some sources of background contrib-
uting to � may be deemed small enough to ignore, and
some physics effects on �, such as gluon radiation, may be
believed to be well enough reproduced by the simulation to
be reliable ‘‘within a factor of 2’’). It is therefore natural to
represent that information by an evidence-based prior.
Here we will assume that � and � are independent of �
and that their prior factorizes as a product of two gamma
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densities:

�ð�;� j�Þ ¼�ð�;�Þ ¼ aða�Þx�1=2e�a�

�ðxþ 1
2Þ

bðb�Þy�1=2e�b�

�ðyþ 1
2Þ

;

(17)

where a, b, x, and y are known constants, related to the
means �� and �� and coefficients of variation 	� and 	� by

�� ¼ xþ 1
2

a
; 	� ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

xþ 1
2

q ;

�� ¼ yþ 1
2

b
; 	� ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

yþ 1
2

q :

(18)

The built-in assumption that � and � are uncorrelated is
clearly an approximation, since they share a dependence on
the integrated luminosity, which is itself uncertain.

There are two ways of interpreting this prior. The first
one is appropriate when information about � and � comes
from one or more nonexperimental sources, such as
Monte Carlo studies and theoretical calculations, and takes
the form of a central value plus an uncertainty. Since the �
and � components of the prior are each modeled by a two-
parameter density, one can fix the shape of this density in
each case by matching its mean with the central value of
the corresponding measurement and its standard deviation
with the uncertainty. It will then be necessary to check the
robustness of the final analysis results to reasonable
changes in this procedure. For example, one may want to
replace the gamma distribution by a log-normal or trun-
cated Gaussian one and the mean by the mode or median.

The second interpretation of prior (17) follows from the
analysis of two independent, auxiliary Poisson measure-
ments, in which the observed number of events is x for the
effective luminosity and y for the background. The ex-
pected numbers of events in these auxiliary measurements
are a� and b�, respectively. For a Poisson likelihood with
mean a� the reference prior coincides with Jeffreys’ prior
and is proportional to 1=

ffiffiffi
�

p
. Given a measurement x, the

posterior will then be a gamma distribution with shape
parameter xþ 1=2 and scale parameter 1=a. A similar
result holds for the background measurement. In this man-
ner the prior (17) is obtained as a joint reference posterior
from two auxiliary measurements.

The problem we are interested in is finding a prior for �,
about which either little is known or one wishes to act as if
this is so.

1. Application of method 1 to the single-count model

This section serves two purposes: to illustrate the ana-
lytical algorithm for computing reference priors and to
apply method 1 to model (16).

In method 1 [17], we find first the conditional reference
prior�Rð� j �;�Þ and then multiply by the evidence-based

prior �ð�;�Þ to construct the full prior �ð�; �;�Þ. As will
be illustrated in Sec. IV, the single-count model is regular
enough to warrant using Jeffreys’ rule in the first step of the
calculation of �Rð� j �;�Þ. We therefore apply Eq. (15) to
the � dependence of the likelihood (16), while holding �
and � constant; this yields

�Jð� j �;�Þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
�
� @2

@�2
lnpðn j �; �;�Þ

�s

/ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��þ�

p : (19)

This prior is clearly improper with respect to � and is
therefore only defined up to a proportionality constant.
However, this constant could very well depend on � and
�, since we kept these parameters fixed in the calculation.
It is important to obtain this dependence correctly, as
examples have shown that otherwise inconsistent Bayes
estimators may result. Reference [17] proposes a compact
subset normalization procedure. One starts by choosing a
nested sequence�1 � �2 � � � � of compact subsets of the
parameter space� ¼ fð�; �;�Þg, such that [‘�‘ ¼ � and
the integral K‘ð�;�Þ of �Jð� j �;�Þ over �‘ �
f�: ð�; �;�Þ 2 �‘g is finite. The conditional reference
prior for � on �‘ is then

�R;‘ð� j �;�Þ ¼ �Jð� j �;�Þ
K‘ð�;�Þ : (20)

To obtain the conditional reference prior on the whole
parameter space, one chooses a fixed point ð�0; �0; �0Þ
within that space and takes the limit of the ratio

�Rð� j �;�Þ / lim
‘!1

�R;‘ð� j �;�Þ
�R;‘ð�0 j �0; �0Þ : (21)

By taking the limit in this ratio form, one avoids problems
arising from K‘ð�;�Þ becoming infinite as ‘ ! 1.
The theory of reference priors currently does not provide

guidelines for choosing the compact sets �‘, other than to
require that the resulting posterior be proper. In most cases
this choice makes no difference and one is free to base the
choice of compact sets on considerations of simplicity and
convenience. However, we have found that some care is
required with the single-count model. Indeed, suppose we
make the plausible choice

�‘ ¼ fð�; �;�Þ: � 2 ½0; u‘�; � 2 ½0; v‘�; � 2 ½0; w‘�g;
(22)

where fu‘g, fv‘g, and fw‘g are increasing sequences of
positive constants. If we use these sets in applying
Eqs. (20) and (21) to the prior (19), we obtain

�Rð� j �;�Þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

��þ�

s
: (23)

Although this prior is still improper with respect to �, its
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dependence on � is different from that of the conditional
Jeffreys’ prior, Eq. (19). This demonstrates the potential
importance of the compact subset normalization. The prior
in Eq. (23) has a serious problem, however. Suppose that
the � marginal of our evidence-based prior for � and � is
expð��Þ= ffiffiffiffiffiffiffi

��
p

. It is then easy to verify that the resulting
posterior is improper, since its � marginal has the non-
integrable form expð��Þ=�. The cause of this problem is
the choice of compact sets (22).

Fortunately it is not difficult to find a sequence of
compact sets that will provide a proper posterior. Indeed,
the � dependence of the prior (19) suggests that the com-
pact sets should be based on the parametrization ð��; �;�Þ
rather than ð�; �;�Þ [18]. We therefore set

�‘ ¼ fð�; �;�Þ: � 2 ½0; u‘=��; � 2 ½1=v‘; v‘�;
� 2 ½0; w‘�g; (24)

where u‘, v‘, and w‘ are as before. Again using Eqs. (19)–
(21), we now find

�R1ð� j �;�Þ / �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��þ�

p ; (25)

which is identical to Jeffreys’ prior for this problem and
yields well-behaved posteriors. For future use, the sub-
script R1 on the left-hand side indicates that this reference
prior was obtained with method 1.

We now have all the ingredients needed to calculate
the marginal reference posterior �R1ð� j nÞ for the cross
section �: the likelihood (16), the marginal nuisance prior
(17), and the conditional reference prior (25). For calculat-
ing posterior summaries in terms of intervals and upper
limits it is convenient to express the result as a tail proba-
bility:

Z 1

�
�R1ð
 j nÞd


¼
Z 1

�=ðaþ�Þ
unþyð1� uÞx�1=2

Bðnþ yþ 1; xþ 1
2Þ

� B½b=ðbþ1Þ�½1þð1�1=uÞ�=a�ðyþ 1
2 ; nþ 1

2Þ
Bb=ðbþ1Þðyþ 1

2 ; nþ 1
2Þ

du; (26)

where

Bzðu; vÞ �
Z z

0
tu�1ð1� tÞv�1dt (27)

is the incomplete beta function, and Bðu; vÞ � B1ðu; vÞ ¼
�ðuÞ�ðvÞ=�ðuþ vÞ.

2. Application of method 2 to the single-count model

In contrast with method 1, method 2 requires from the
start that we specify the evidence-based prior for the
effective integrated luminosity � and the background con-
tamination�. Furthermore, this specification must be done

conditionally on the signal rate �. As mentioned earlier,
we will use expression (17) for this prior.
The next step in the application of method 2 is to

marginalize the probability model (16) with respect to �
and �:

pðn j �Þ ¼
ZZ

pðn j �; �;�Þ�ð�;� j �Þd�d�

¼
ZZ ð��þ�Þn

n!
e����� aða�Þx�1=2

�ðxþ 1
2Þ

� e�a� bðb�Þy�1=2

�ðyþ 1
2Þ

e�b�d�d�

¼
�

a

aþ �

�
xþ1=2

�
b

bþ 1

�
yþ1=2

S0nð�Þ; (28)

where

Smn ð�Þ �
Xn
k¼0

km
kþ x� 1

2

k

� �
n� kþ y� 1

2

n� k

� �

�
�

1

bþ 1

�
n�k

�
�

aþ �

�
k
; (29)

and the binomial coefficients are expressed in terms of
gamma functions to accommodate noninteger values of
their arguments. Finally, the reference prior algorithm
must be applied to the marginalized model pðn j �Þ. As
in the case of method 1, the conditions for applying
Jeffreys’ rule are satisfied here; we therefore obtain

�R2ð�Þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n¼0

½ðxþ 1
2ÞS0nð�Þ � a

� S
1
nð�Þ�2

ðaþ �Þxþ5=2S0nð�Þ

vuut : (30)

We will use the notation �R2ð�Þ to refer to the marginal
reference prior for � obtained with method 2. Note that the
compact subset argument invoked in the construction of
the method 1 reference prior is not needed here because all
the parameters other than � have already been eliminated
by marginalization.
For method 2 the marginal reference posterior for � is

proportional to the product of the marginal data probability
distribution (28) and the marginal reference prior (30):

�R2ð� j nÞ / pðn j �Þ�R2ð�Þ: (31)

The normalization of �R2ð� j nÞ must be obtained
numerically.

B. The multiple-count model

An important generalization of the single-count model is
obtained by considering M replications of the latter; the
likelihood is

pð ~n j �; ~�; ~�Þ ¼ YM
i¼1

ð�i�þ�iÞni
ni!

e��i���i : (32)

To obtain the method 1 reference prior for this model, we
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first calculate Jeffreys’ prior for �, while keeping ~� and ~�
fixed:

�Jð� j ~�; ~�Þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

�2i
�i�þ�i

vuut : (33)

This prior is improper, requiring us to apply the compact
subset normalization described in Sec. III A 1. Using a
straightforward generalization of the nested compact sets
of Eq. (24), we find that the correct reference prior is
identical to Jeffreys’ prior.

In order to apply method 2, we need to specify a proper
conditional prior for the �i and �i given �. Neglecting
correlations, we set

�ð ~�; ~� j�Þ ¼YM
i¼1

aiðai�iÞxi�1=2e�ai�i

�ðxi þ 1
2Þ

biðbi�iÞyi�1=2e�bi�i

�ðyi þ 1
2Þ

:

(34)

The marginalized data probability distribution pð ~n j �Þ is
then a product of expressions of the form (28), one for each
count i.

Here we no longer attempt to obtain analytical expres-
sions for the method 1 and 2 reference posteriors. Instead,
we use the numerical algorithms described below.

C. Numerical algorithms

In this section we describe numerical algorithms that can
be used to compute method 1 or 2 reference posteriors for
the single- and multiple-count Poisson likelihoods dis-
cussed in the previous sections.

For method 1 the algorithm starts by generating ð�; ~�; ~�Þ
triplets from the ‘‘flat-prior posterior,’’ i.e. the posterior
obtained by setting �ð� j ~�; ~�Þ ¼ 1 (line 3 in the pseudo-
code below); the correct reference prior �ð� j ~�; ~�Þ is then
computed at lines 4–7 and is used at line 9 to weight the
generated � values so as to produce the reference poste-
rior:

1 Set ~no to the array of observed event numbers.

2 For i ¼ 1; . . . ; I:
3 Generate ð�i; ~�i; ~�iÞ 	 pð ~no j �; ~�; ~�Þ�ð ~�; ~�Þ.
4 For j ¼ 1; . . . ; J:
5 Generate ~nj 	 pð ~n j �i; ~�i; ~�iÞ.
6 Calculate d2½� lnpð ~nj j �i; ~�i; ~�iÞ�=d�2

i

by numerical differentiation.

7 Average the J values of d2½� lnpð ~n j �i; ~�i; ~�iÞ�=d�2
i

obtained at line 6, and take the square root. This yields

a numerical approximation to the conditional Jeffreys’

prior �Jð�i j ~�i; ~�iÞ.
8 Histogram the �i values generated at line 3, weighting them by

�Jð�i j ~�i; ~�iÞ=pð ~no j �i; ~�i; ~�iÞ. This yields �R1ð�Þ,
the �-marginal prior.

9 Histogram the �i values generated at line 3, weighting them by

�Jð�i j ~�i; ~�iÞ. This yields �R1ð� j ~noÞ,
the �-marginal posterior.

Although not required for the calculation of the refer-
ence posterior, an approximation to the reference prior is
provided at line 8. By construction this approximation is
only reliable for � values in the bulk of the flat-prior
posterior. The generation step at line 3 is done via a
Markov chain Monte Carlo procedure [19]. The particular
choice of sampling distribution for the generated ð�; ~�; ~�Þ
triplets is motivated by the desire to obtain weights with
reasonably small variance at steps 8 and 9. However, the
flat-prior posterior pð ~n0 j �; ~�; ~�Þ�ð ~�; ~�Þ is not always
proper with respect to ð�; ~�; ~�Þ. When M ¼ 1 (single-
count model), it is improper if x � 1=2. Propriety can
then be restored by multiplying the flat-prior posterior by
� and correspondingly adjusting the weights at steps 8 and
9. Another feature of the above algorithm is that it does not
implement the compact subset normalization. In the cases
that we examined, this procedure made no difference, but
this may not be true for more general problems than those
our code seeks to solve. Unfortunately the current lack of
guidelines in the choice of compact sets limits our ability to
address this issue in the code.
The algorithm for method 2 has a simpler structure,

since all it does is apply Jeffreys’ rule to a marginalized
likelihood pð ~no j �Þ provided by the user. The calculation
does not require random sampling of the parameters and is
done at fixed � values. For a given �, the reference prior
�R2ð�Þ is obtained by Monte Carlo averaging, over an
ensemble of vectors ~n generated from pð ~n j �Þ, of an
accurate numerical approximation of the second derivative
of the negative log-likelihood [20]. As already pointed out,
method 2 does not require a compact subset normalization
procedure. The reference posterior is thus proportional to
the product of pð ~no j �Þ and�R2ð�Þ, and the normalization
with respect to � must be determined numerically.

IV. VALIDATION STUDIES

We have performed a number of studies to validate
inferences from the single-count model, using both the
numerical algorithms described in Sec. III C and analytical
expressions we obtained for the marginal method 1 and 2
posteriors for �. To recapitulate, we have two reference
priors for this model:

�R1ð�; �;�Þ ¼ �R1ð� j �;�Þ�ð�;�Þ; (35)

�R2ð�; �;�Þ ¼ �R2ð�Þ�ð�;�j�Þ; (36)

and we have assumed that �ð�;� j �Þ ¼ �ð�;�Þ at
Eq. (17). As explained in Sec. III, this extra assumption
affects only the definition of �R2, which therefore incor-
porates more information than �R1. In the present section
we study and compare the properties of these two reference
priors. To begin, we show some example prior and poste-
rior � marginals in Fig. 2.
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As expected, posteriors corresponding to a small ob-
served number of events favor small cross sections, and
posteriors derived from flat priors put less weight on small
cross sections than reference posteriors.

Our derivations of the two reference prior methods made
use of Jeffreys’ rule (15). As pointed out in Sec. II B, this
approach assumes that some regularity conditions are sat-
isfied, such that the resulting posterior is asymptotically
normal. We now wish to verify this assumption with a
graphical example. If one adopts the objective Bayesian
view that the parameters �, �, and� have true values, then
the asymptotic limit can be defined as the result of a large
number NR of replications of the measurement, in the limit
where that number goes to infinity. For the case where each
measurement replication i consists of a number of events ni
drawn from a probability mass function fðn j �; �;�Þ, the
reference posterior has the form:

�Rð�; �;� j n1; n2; . . . ; nNR
Þ

/ �Rð�; �;�ÞYNR

i¼1

fðni j �; �;�Þ; (37)

and the reference prior �Rð�; �;�Þ is calculated from the
combined likelihood for the NR measurements; it can also
be calculated from a single one of these likelihood func-
tions, since it follows from their constructive definition
(14) that reference priors are independent of sample size.
For method 1 the prior is given by the product of Eqs. (17)
and (25) and the likelihood component fðn j �; �;�Þ by
Eq. (16). Replicating the measurement NR times is then
equivalent to making a single measurement with a Poisson

likelihood whose mean is NR times the original mean and
whose observation is the sum of the NR original observa-
tions ni. This property of Poisson measurements simplifies
the calculations considerably. For method 2 the prior is
given by Eq. (30) and the likelihood by Eq. (28). In this
case no simplification obtains when considering multiple
replications, and numerical calculations must use explic-
itly the full product of likelihood functions.
Figure 3 illustrates the calculations with the help of so-

called Q-Q plots, where recentered quantiles from the
reference posterior for � are plotted against standard nor-
mal quantiles. The posterior quantiles Q� are recentered

according to ~Q� ¼ ðQ� � h�iÞ=��, where the posterior
mean h�i and standard deviation �� are numerically
estimated. For method 1 we set the true values of �, �,
and � to 1. We then randomly generate a sequence of 100
independent measurements from the probability mass
function (16) and use the subsequences with NR ¼ 1, 10,
and 100 to produce the curves in the left panel. For method
2 we set the true value of � to 1 and give the priors for �
and � each a mean of 1 and a coefficient of variation of
20%. Measurements are then generated from the probabil-
ity mass function (28) in order to compute the curves in the
right panel. Both panels clearly show that the respective
reference posteriors approach a Gaussian shape as the
number of measurement replications increases.
Given the almost negligible difference between method

1 and 2 posteriors exhibited in Fig. 2 and the fact that our
analytical results for method 1 are computationally more
tractable than those for method 2, our considerations in
the remainder of this section will focus exclusively on
method 1.

FIG. 2. Left: Marginal method 1 and 2 priors, normalized to 1 at � ¼ 1. Right: Marginal method 1 and 2 posteriors for 0, 1, and 4
observed events, together with the posteriors obtained from a flat prior. The � and � priors have a mean of 1 and a 20% coefficient of
variation [corresponding to x ¼ y ¼ 24:5 and a ¼ b ¼ 25 in Eq. (18)]. Here and in subsequent plots, the units of � are arbitrary but
consistent with those of �; e.g., if the latter is expressed in pb�1, then � is given in pb so that, like �, the product of � and � is
dimensionless.
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Among the reference prior properties listed in Sec. II,
the ones of generality, invariance, and coherence are true
by construction. The property of sampling consistency
needs more elaboration, however, since Bayesian infer-
ences do not generally coincide with exact frequentist
ones, and a proper evaluation requires first of all the
specification of an ensemble of experiments. Awell-known
property of Bayesian posterior intervals constructed from a
proper prior is that their coverage is exact when averaged
over the prior [21]. This is an immediate consequence of
the law of total probability. Indeed, given a parameter �,
with proper prior �ð�Þ, and a measurement X, the prior-
averaged frequentist coverage of a 1� � Bayesian credi-
bility interval RðXÞ can be written as

E�½Pð� 2 RðXÞ j �Þ� ¼ Pð� 2 RðXÞÞ
¼ Em½Pð� 2 RðXÞ j XÞ�
¼ Emð1� �Þ ¼ 1� �; (38)

where the first expectation is over the prior �ð�Þ and the
second one over the marginal sampling distribution
mðxÞ ¼ R

pðx j �Þ�ð�Þd�. When �ð�Þ is a reference prior,
and especially when it is improper, there is no natural
metric over which the coverage can be averaged. The
only sensible approach in that case is to study the coverage
pointwise, i.e. as a function of the true value of �. Since the
single- and multiple-count models discussed in this paper
combine an improper prior for the parameter of interest �
with proper priors for the nuisance parameters ~� and ~�, we
will study interval coverage for a fixed value of �, but
averaged over �ð ~�; ~�Þ. Our interest is in how this coverage
evolves toward the asymptotic limit. As before, we take
this limit in the sense of an ever-increasing number NR of

experiment replications. For a given value of NR, the
posterior is formed as in Eq. (37) and its coverage is
computed.
Figure 4 shows the coverage of 95% credibility upper

limits and 68% credibility central intervals as a function of
NR. As the latter increases, the coverage converges to the
credibility, confirming the sampling consistency of the
method.
Finally, we examine the behavior of reference posterior

upper limits on � as a function of the expected background
�� [defined in Eq. (18)] when the observed number of
events n is small. For comparison, when n ¼ 0 and there
are no uncertainties on signal efficiency and background,
frequentist upper limits decrease linearly with background.
From a Bayesian point of view this result is surprising.
Indeed, when zero events are observed the likelihood
function factorizes exactly into background and signal
components, indicating that the experiment actually per-
formed can be analyzed as the combination of two inde-
pendent experiments, one to measure background and the
other signal. If, in addition, signal and background are
a priori independent, then posterior inferences about signal
will be independent of background. In particular, upper
limits on � will be constant as a function of ��, not linearly
decreasing. The reference priors entangle signal and back-
ground, however, so that upper limits will not be exactly
constant. The n ¼ 0 case is illustrated in Fig. 5 for two
values of the relative uncertainties on background and
signal efficiency.
For n > 0 the likelihood function still factorizes ap-

proximately since ð�þ ��Þn 
 �nð1þ n��=�Þ 
 �n

for � � ��; n. Thus upper limits will flatten out at large
��, as seen in Fig. 5. A comparison of the left and right
panels in that figure also shows that upper limits increase

FIG. 3. Q-Q plots of the method 1 conditional reference posterior (left) and the method 2 marginal reference posterior (right) versus
the standard normal distribution. The reference posterior quantiles have been recentered (see text). NR is the number of measurement
replications and ntot is the observed number of events summed over all replications.

LUC DEMORTIER, SUPRIYA JAIN, AND HARRISON B. PROSPER PHYSICAL REVIEW D 82, 034002 (2010)

034002-10



with the uncertainty on background and signal efficiency,
as expected.

V. MEASUREMENT OF THE SINGLE-TOP QUARK
CROSS SECTION

In this section, we demonstrate the computational feasi-
bility of the methods described above by applying them to
the recent measurement of the single-top cross section by
the D0 and CDF Collaborations [22,23]. Both Col-
laborations use the same form of likelihood function—a
product of Poisson distributions over multiple bins of a
multivariate discriminant, the same form of evidence-
based priors, namely, truncated Gaussians, and flat priors

for the cross section [24]. As a realistic example, we
construct the reference prior for the cross section using
one of the data channels considered by D0.
D0 partitioned their data into 24 channels, defined by

lepton flavor (electron or muon), jet multiplicity (two,
three, or four), number of b-tagged jets (one or two), and
two data collection periods. The discriminant distribution
is shown in Fig. 3 of Ref. [22]. Here we consider the
electron, two-jet, single-tag channel from one of the
data-taking periods. The discriminant distribution contains
about 500 counts spread over 50 bins, with a maximum bin
count of about 40.
We model information about the effective integrated

luminosity � and the background � for each bin with the

FIG. 4. Coverage probability of method 1 posterior credibility upper limits (left) and central intervals (right), as a function of the
number of experiment replications NR. The solid lines indicate the nominal credibility.

FIG. 5. Variation of the method 1 reference posterior upper limit with mean background for several values of the observed number of
events n. The relative uncertainty on the background and on the effective luminosity is 20% for the left plot and 50% for the right one.
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help of the gamma priors of Eq. (17). These evidence-
based priors describe the uncertainty due to the finite
statistics of the Monte Carlo simulations. We do not in-
clude systematic uncertainties in this example. Figure 6(a)
shows a comparison of the reference prior for the cross
section using methods 1 (the histogram) and 2 (the dashed
curve). The jaggedness of the method 1 prior reflects the
fluctuations due to the Markov chain Monte Carlo [19]
sampling of the parameters. The increased jaggedness at
large � is due to the fact that the numerical algorithm
samples from the flat-prior posterior, whose density rapidly
decreases in this region. It is noteworthy that the priors
computed using the two methods are very similar for this
particular example. This is also reflected in the similarity
of the posterior densities, shown in Fig. 6(b). In principle,
fluctuations in the calculated posterior can be made arbi-
trarily small by increasing the size of the Monte Carlo
sample. For reference, Fig. 6(b) also shows the posterior
density using a flat prior for the cross section. An obvious
conclusion can be drawn: when the data set is large, here of
order 500 events, the precise form of the reference prior is
not important. However, for small data sets—which is
typical of searches for new or rare phenomena—one
should expect the form of the prior to matter. It is then
important to use a prior with provably useful properties,
such as the ones enumerated in Sec. II.

VI. DISCUSSION

Our main purpose in this paper was to propose a set of
formal priors with properties that make them attractive for
use in the analysis of high energy physics data. Aside from
the theoretical properties of invariance, coherence and
sampling consistency, the reference prior method has three
important practical advantages: (i) priors can be defined for

almost any problem, regardless of the complexity of the
likelihood function and the number of nuisance and inter-
est parameters, (ii) in contrast with flat priors, reference
priors have so far always yielded proper posteriors, and
(iii) reference priors are computationally tractable, as
shown by the single-top example.
Here we have limited our numerical investigations to the

class of likelihood functions that are derived from Poisson
probability mass functions. For this class the method 1
reference prior agrees with Jeffreys’ rule. For other classes
the compact subset normalization argument may introduce
a difference. A possible generalization of our treatment is
to unbinned likelihoods. Since our method 1 and 2 numeri-
cal algorithms make no assumptions about the likelihood
function, they can be generalized to the unbinned case.
However, the method 1 algorithm does not implement the
compact subset normalization and is therefore only appli-
cable to cases where this procedure makes no difference.
Method 2 requires no compact subset normalization but
makes an extra assumption about the conditional nuisance
prior.
For problems that involve a single continuous parameter

or that can be reduced to this case by a method-2-type
integration, Ref. [12] proposes a numerical algorithm that
is based directly on Eq. (14) and is therefore very general.
However, we found that this algorithm presents some
difficulties for the complicated likelihood functions used
in high energy physics. One difficulty is the round-off error
in the product of large numbers of probability densities.
Another difficulty is the assessment of the convergence of
the integrals in the formula and of the convergence of the
finite-sample priors to the reference prior.
Another possible generalization is to problems with

more than one parameter of interest, as, for example, in
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FIG. 6 (color online). (a) Prior densities computed using method 1 (histogram) and method 2 (dashed curve), and (b) corresponding
posterior densities, for one of the channels in the D0 single-top measurement and using 2:3 fb�1 of data. For comparison we show the
posterior density computed using a flat prior (dotted curve).
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the measurement of the individual single-top production
cross sections in the s and t channels. For this situation the
reference prior algorithm requires one to sort the parame-
ters of interest by order of importance [12], and the results
may depend on this ordering. A possible interpretation of
this dependence is that it is a measure of the robustness of
the result to the choice of prior. This is an area that requires
more study.

We have developed a general-use software package that
implements the methods described in this paper and have
released it to the Physics Statistics Code Repository
(phystat.org).

Finally, we note that the main ideas underlying the
construction of reference priors, namely, generality, repar-
ametrization invariance, coherence, and sampling consis-

tency, have motivated the development of methods for
summarizing reference posteriors via point estimates, in-
tervals, and hypothesis tests. This subfield of objective
Bayesianism is known as reference analysis [12,13].
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