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Multivariate discriminants

Harrison B. PROSPER
Florida State University, Floride, USA

1.1 Introduction

The classification of objects and the closely related task of signal enhancement relative to background
are extremely important in data analysis. In this paper, we explain how both tasks — referred to gene-
rically as discrimination — can be achieved in principle and in practice. Since most interesting data are
multidimensional, the most effective discrimination methods are those that make use of the dependencies
between the variables. Each discrimination method results in an approximation to a function, f(x), called
a multivariate discriminant whose domain is the n-dimensional space of discriminating variables x
and whose range is either the interval [0,1] or the interval [-1, 1]. In order to focus on the essential ideas
of object discrimination, and avoid complications that serve no useful pedagogical purpose, we restrict
the discussion to the important special case of object classification into two classes, that is, we consider
binary classification. In a binary classification problem, an object is assigned to one class if f(x) < q
and to the other class if f(x) ≥ q, where q is some threshold chosen by the analyst.

The paper is organized as follows. In Part 1, we describe the salient features of discrimination theory.
In Part 2, we describe a few powerful, yet practical, methods for implementing the theory. We end with
a discussion of outstanding issues and a few concluding remarks.

1.2 Part 1

1.2.1 Optimal Discrimination

A basic task in data analysis is to separate objects into one or more classes. Each object is characterized
by an n-tuple of variables x = (x1, · · · , xn), referred to variously as discriminating variables or feature

variables. Sometimes this separation is done with the goal of treating objects in a given class as if they
are all of that class. For example, in high energy physics a common task is to identify electrons. In
observational cosmology, the task may be to distinguish Type Ia supernovae from other supernovae. In
both cases, the correct identity of the objects — electrons on the one hand and Type Ia supernovae
on the other is the goal. Sometimes, however, the goal is simply to select, preferentially, objects of a
certain type, for example, signal objects. In this section, we answer the following question : how should
these objects be discriminated ? A straightforward answer is : apply a threshold, that is, a cut, to each
discriminating variable ; should an object pass all the cuts, we declare it to be of the appropriate class.
This answer however is incomplete. It is incomplete because it does not give rules for choosing the cuts,
nor for determining whether the discrimination is optimal.

In statistical analyses, these rules are represented formally by loss functions, L. A loss function
measures the loss incurred by making a poor choice, here the choice (or decision) about where to place
cuts on the discriminating variables. Ideally, the loss function encodes as accurately as possible the goal of
the analysis. For example, in a Higgs analysis, the goal may be to measure the Higgs mass as accurately as
possible. Or perhaps the goal is to measure the Higgs production cross section with the smallest possible
relative uncertainty. Each of these goals corresponds to a different loss function and therefore a different
optimization problem. Consequently, cuts that are best for measuring the Higgs mass need not be the
same as those that are best for the measuring the cross section. Moreover, even after having arrived at the
best set of cuts on the discriminating variables, it is generally found that optimal discrimination has not
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8 Les analyses discriminantes Multivariées

been achieved because the absolute minimum of the loss function has not been reached. Therefore, when
a colleague declares she has optimized the cuts, what she really means is that she has found the “best
cuts.” The “best cuts” may, or may not, be optimal. In general, in order to achieve optimal discrimination
it is necessary to combine the discriminating variables into a single multivariate discriminant f(x), where
x denotes the n-tuple of discriminating variables and f is some appropriately constructed function.

There are two broad approaches to constructing such functions : machine learning [1, 2] and Baye-

sian learning [3], each with its own methods, jargon and theory. Superficially, the two approaches are
very different. But, upon close inspection, they are seen to be merely different ways of expressing the
same basic ideas. In both approaches, it is assumed that a function y = f(x) exists that would achieve
optimal object discrimination in the sense of minimizing the given loss function. In general, the function
f is not known. The best that can be done is to find a good approximation to it. However, even though
the detailed form of the multivariate discriminant is unknown, as we shall see shortly, for a specific choice
of loss function it is possible to write an explicit formula for f(x) in terms of the probability densities of
the discriminating variables.

1.2.2 Machine Learning

In the machine learning approach [1, 2], the multivariate discriminant y = f(x) is found by the direct
or indirect minimization of a loss function. The basic elements of this approach are :

– a class of functions F = {f(x,w)}, where w are parameters to be found by the minimization
procedure ;

– a constraint Q(w) on the class of functions, F, and
– a loss function, L(y, f), that quantifies the loss incurred if the function f(x,w) is poorly chosen

from the function class F, that is, if f(x,w) is far from the desired function y = f(x).
The desired value, y, of the function f(x), to be approximated by f(x,w), is called the target.

In spite of what we have just stated, it turns out that minimizing the loss function L(y, f) directly
is not a good strategy ! The reason is because the function f(x,w) would depend on the specific set of
data used to find it. Minimizing the loss function on the observed data would be as ill-advised as tuning
cuts using the same. It is generally agreed that the many decisions that must be made in any non-trivial
analysis be as independent as possible of the data used to obtain the final results ; that is, there should
be some degree of “blindness” with respect to the final results. Moreover, it is generally agreed that final
results ought to be robust with respect to changes in the data used : a small change in the data should
yield a correspondingly small change in the results.

In view of these comments, it is much more satisfactory to minimize not the loss function itself but
rather its average with respect to all possible realizations of the data. These realizations are called training

data, T , and are either the results of Monte Carlo simulations (and) or real data that are independent of
those used to obtain the final results. The average of the loss function L(y, f(x,w)) defines a functional 1

called the empirical risk function R(w)

R(w) =
1

N

N
∑

i=1

L(yi, f(xi, w)), (1.1)

where N is the sample size of the training data, T . Instead of finding f(x,w) by minimizing the loss
function we find it by minimizing the empirical risk, R(w), subject to the constraint Q(w), that is, by
minimizing the cost function

C(w) = R(w) + λQ(w), (1.2)

where λ is a tunable parameter that determines how strongly the constraint is imposed. A constrained
χ2 fit of a function to data is a well-known cost function in data analysis. In high energy physics, it is
used in everything from curve-fitting to the extraction of parton distribution functions using disparate
data sets from multiple experiments. At the minimum of the cost function C(w), a function f(x,w∗) will
be selected from the function class, which, in the limit N → ∞, converges to the function f(x,w0) that

1. A functional of a function f(x) is a function that depends on all values of f(x) simultaneously.
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would have been selected were it possible to minimize the true risk function

R(w) =

∫

L(y, f(x,w)) p(y, x) dydx, (1.3)

where p(y, x) is the joint probability density of y and x. The empirical risk, given in Eq. (1.1), is a
consistent 2 estimate of the risk function, Eq. (1.3), in that the empirical risk converges to the true risk
as the training sample grows to infinity [1].

1.2.3 Bayesian Learning

In the Bayesian approach, every statistical problem is regarded as a problem of inference [4]. In the
present context, the problem is to infer the function y = f(x) [3]. The Bayesian approach requires
specification of the following ingredients :

– a class of parameterized functions F = {f(x,w)} ;
– a prior density π(f) over the space of functions and
– a likelihood function, p(y|x,w), that is proportional to the probability that the value y is associated

with the n-dimensional discriminating variable x.
The prior density π(f) assigns a number to every function f that quantifies the relative probability of
each function, a priori. It is technically challenging to construct priors over function spaces. Therefore,
in practice, the prior density, π(w), is defined over the space {w} of parameters instead. Unfortunately,
that too is a difficult task. But, given the prior density π(w) and the likelihood function p(y|x,w), Bayes’
theorem

p(w|T ) =
p(T |w)π(w)

p(T )
,

=
p(y, x|w)π(w)

p(y, x)
,

=
p(y|x,w)p(x|w)π(w)

p(y|x)p(x)
,

∼ p(y|x,w)π(w), (1.4)

can be used to assign a probability density p(w|T ) to every point w in the parameter space of the class
of functions {f(x,w)}. Since each point w corresponds to a function f(x,w), p(w|T ) is the probability
density assigned to it. Suppose p(w1|T ) > p(w2|T ) for two points w1 and w2, respectively, then the
associated function f(x,w1) is more compatible with the training data T than is the function f(x,w2).
In Eq. (1.4), we have made the reasonable assumption that the probability density of the n-dimensional
discriminating variable x is independent of the parameters w, that is, that p(x|w) = p(x).

The posterior density p(w|T ) is the final result of the Bayesian inference. But, it is the starting
point for the calculation of many useful quantities. One such quantity is the predictive distribution [4],

p(y|x, T ) =

∫

p(y|x,w)p(w|T )dw, (1.5)

which can be used to predict plausible values for the unknown function f(x), given the n-dimensional
discriminating variable x and the training data T on which the predictions are based. In other words, for
a given value of x, the predictive distribution gives a distribution of possible values of y and assigns a
probability p(y|x, T )dy to each. It is often useful, however, to have a single estimate of the true mapping
y = f(x), rather than a distribution of possible mappings. In principle, an estimate, f̂ , of f can be found
in the usual way by minimizing a suitable risk function, for example,

f(x) ≈ f̂(x) = argf̂ min

∫

L(y, f̂)p(y|x, T )dy, (1.6)

2. A consistent estimate X̂ of a quantity X is one that converges to the true value of the quantity as the data sample

size goes to infinity.
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with respect to f̂ , where L(y, f) is the loss function. A common choice for the latter is the quadratic

loss

L(a, b) = (a − b)2, (1.7)

which yields the following estimate

f̂(x) =

∫

yp(y|x, T )dy, (1.8)

of y = f(x). Thus for a quadratic loss function, the optimal estimate of y = f(x) is the mean of the
predictive distribution, Eq. (1.8). Other loss functions, in general, will yield other estimates.

1.2.4 Machine Learning is Bayesian Learning in Disguise

We claimed above that the machine and Bayesian learning approaches are merely different ways
to phrase the same mathematical problem. This is true provided one is willing to make the following
identifications

R(w) ∼ ln p(y|x,w),

=

N
∑

i=1

ln p(yi|xi, w), (1.9)

λQ(w) ∼ ln π(w). (1.10)

If this is accepted, then the machine learning approach provides a maximum a posteriori (MAP)
estimate of the function y = f(x). In other words, minimizing the cost function Eq.(1.2) is equivalent
to maximizing the posterior density, Eq.(1.4). For a unimodal posterior density, this yields a single best
estimate f(x,w∗) of the function y = f(x). But, in the fully Bayesian approach one averages, in effect,
over all plausible choices for f(x,w) weighted by the posterior density p(w|T ). Interestingly, one of the
most promising recent advances in machine learning, ensemble learning — discussed in Part 2, embraces
the idea of averaging over functions. In that sense, both approaches have become even more closely
related [5, 6, 7].

1.2.5 Optimal Classification

Regression (for example, curve-fitting) and classification differ by the choice of targets y and loss
function, L. In regression, the targets are continuous functions of x and the loss function most commonly
used is the quadratic loss, given in Eq.(1.7). The corresponding empirical risk is

R(w) =
1

N

N
∑

i=1

[yi − f(xi, w)]2, (1.11)

which is equivalent to the likelihood function

p(y|x,w) = exp(−NR(w)/2σ2)/σ
√

2π. (1.12)

The typical goal of classification is to classify objects while making the fewest possible mistakes. Suppose
we wish to identify electrons or Type Ia supernovae. Surely, we would wish to make as few classification
mistakes as possible. If so, it is possible to write a cost function that captures this goal explicitly. For
concreteness, consider the classification of objects into one of two classes called signal S and background

B. Although our discussion will be in terms of classification into a signal or a background class, the
discussion would proceed unchanged for any binary classification problem ; for example, classification into
electron and non-electron classes, or Type Ia and non-Type Ia classes.

For simplicity, let us suppose that each object to be classified is characterized by a 1-dimensional
discriminating variable x. The generalization to n-dimensions is in principle straightforward and yields
the same result as we are about to derive. The probability density of x for the signal and background classes
are p(x, S) and p(x,B), respectively, as depicted in Fig. 1.1. The classification of objects into the disjoint
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Figure 1.1 – The curve on
the left depicts the density
p(x,B) = p(x|B)p(B), while
the curve on the right depicts the
density p(x, S) = p(x|S)p(S). The
ratio k = p(S)/p(B) is the prior
signal to background ratio and
p(x|S) and p(x|B) are the conditio-
nal densities of x for the signal and
background classes, respectively. By
definition, the distribution of x is
p(x) = p(x, S) + p(x,B).

classes S and B is defined by the decision boundary x = x0. Objects for which x ≥ x0 are classified as
signal, while those with x < x0 are presumed to be background. Figure 1.1 depicts the practical situation
in which classification errors are unavoidable due to the overlap of the densities pertaining to objects of
the classes S and B. However, it is possible to minimize the probability of such errors as follows. Let CS

be the cost of misclassifying signal as background and CB the cost of misclassifying background as signal.
We can write the cost function, C, for misclassification as

C = CS

∫

H(x0 − x) p(x, S) dx,

+ CB

∫

H(x − x0) p(x,B) dx, (1.13)

where H(x) is the Heaviside (step) function : H(x) = 1 if x > 0 and 0 otherwise. The quantity CS can be
interpreted as the cost of signal loss, while CB is the cost of background contamination. By definition, the
cost function is minimal at the optimal choice of the decision boundary x = x0. That boundary defines a
discriminant function f(x), even though one does not appear explicitly in Eq (1.13). Minimizing the cost
function C with respect to the boundary x = x0

0 = CS

∫

δ(x0 − x) p(x, S) dx,

− CB

∫

δ(x − x0) p(x,B) dx, (1.14)

yields a function BD(x) called the Bayes discriminant,

BD(x0) =
CB

CS
=

p(x0, S)

p(x0, B)
=

p(x0|S) p(S)

p(x0|B) p(B)
. (1.15)

As alluded to, the same result holds when x is multidimensional. In general, the Bayes discriminant can
be written as

BD(x) = B(x)
p(S)

p(B)
=

p(S|x)

p(B|x)
, (1.16)

where B(x), the Bayes factor, is defined by

B(x) =
p(x|S)

p(x|B)
. (1.17)

The last step in Eq. (1.16) follows from Bayes’ theorem p(K|x) = p(x|K)p(K)/p(x), where K = S or B.
Note that as we vary the cost ratio CB/CS , so does the boundary x = x0, therefore, the Bayes factor
is best viewed as a function of x. Note also, that p(S|x) + p(B|x) = 1. The Bayes factor reduces to the
well-known likelihood ratio when the class densities, p(x|S) and p(x|B), are independent of unknown
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parameters.

The function

p(S|x) = p(x|S)p(S)/p(x),

= p(x|S)p(S)/[p(x|S)p(S) + p(x|B)p(B)] (1.18)

is the probability that an object characterized by the n-dimensiomnal variable x is of the signal class S.
This probability, or any one-to-one function of it, is precisely that needed to achieve classification with
the fewest mistakes. The equation q = p(S|x) — where q = CB/(CS + CB) is a constant determined by
the relative cost of background contamination versus signal loss — defines a decision boundary (which, in
general, is a curved surface) in the space of the discriminating variable x. The decision boundary partitions
this space into a signal-rich region p(S|x) ≥ q and a background-rich region p(S|x) < q. The upshot of this
discussion is that binary classification, with the fewest possible mistakes, entails constructing a particular
family of surfaces in the space of discriminating variables. Any function f(x,w) that approximates the
conditional class probability p(S|x) with negligible error is said to have reached the Bayes limit. All

multivariate discrimination methods whose goal is classification with the fewest errors are mathematically
equivalent in that each attempts to approximate the same function, namely, the probability p(S|x), or
some function (or functional) thereof. Consequently, if we have found a method that yields discrimination
close to the Bayes limit we know a priori that no method exists that can discriminate significantly better,
however sophisticated it might be.

In most applications, the ratio k = p(S)/p(B) is not known. Indeed, a measurement of the signal
fraction ǫ = p(S) may well be the object of the analysis. If so, we cannot compute p(S|x) because it
depends on k. Fortunately, this is not a problem because, as noted above, we can specify an appropriate
threshold on any one-to-one function of p(S|x). In particular, we can apply a cut to the discriminant
function

D(x) = s(x)/[s(x) + b(x)], (1.19)

where, to simplify the notation we have set s(x) ≡ p(x|S) and b(x) ≡ p(x|B). A cut on D(x) is equivalent
to a cut on

p(S|x) = D(x)/[D(x) + (1 − D(x))/k], (1.20)

albeit one that is unknown. As we shall see in Part 2, this fact is used routinely in the practical construction
of multivariate discriminants.

At the risk of belaboring the point, we stress again that the discrimimant D(x) is optimal if one’s
goal is to minimize the number of misclassifications or, as discussed in the next section, enhance signal
relative to background. However, if, for example, the goal is to measure the mass of a particle with the
smallest possible uncertainty, a discriminant function other than D(x) may be needed. Unfortunately, in
this case it is generally not possible to find the general form for the multivariate discriminant f(x), nor
is the interpretation of f(x) as clear-cut as it is for D(x) and the related function p(S|x).

1.2.6 Optimal Signal Extraction

The function p(S|x) is optimal in another sense [8]. Suppose we introduced an object-by-object weight
w(x), where to be definite we suppose the objects to be particle collision events, then the prior signal
fraction ǫ = p(S) can be estimated using event-by-event weighting. To see this, we begin by writing the
probability density of the data d(x), which is presumed to be an admixture of signal and background
described by the densities s(x) and b(x), respectively, in the form

d(x) = ǫ s(x) + (1 − ǫ) b(x). (1.21)

Event-by-event weighting is simply multiplication throughout by the weight function w(x)

w(x) d(x) = ǫw(x) s(x) + (1 − ǫ)w(x) b(x). (1.22)
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Now compute the expectations

w̄d =

∫

dxw(x) d(x), (1.23)

w̄s =

∫

dxw(x) s(x), (1.24)

w̄b =

∫

dxw(x) b(x), (1.25)

for the data, signal and background, respectively. The signal fraction ǫ and the variance associated with
its estimate are given by

ǫ = (w̄d − w̄b)/(w̄s − w̄b), (1.26)

and

Var(ǫ) =
1

N

∫

dx[(wd(x) − w̄b)/(w̄s − w̄b)]
2d(x), (1.27)

respectively, where N is the number of observed events. Barlow [8] showed that the variance is minimized
if one chooses the weighting function as follows

w(x) = p(S|x),

= s(x)/[s(x) + b(x)/k],

= D(x)/[D(x) + (1 − D(x))/k], (1.28)

and if k has the correct value, namely, k = p(S)/p(B) = ǫ/(1−ǫ). Again, this seems not to be terribly useful
because we do not know k. However, the weighting function w(x) can be computed using a reasonable
guess for k, say a prediction. The weighting procedure will produce a new estimate of ǫ and therefore of
k. Using the updated value of k, we could repeat the weighting procedure and continue to do so until we
arrive at a self-consistent estimate of ǫ.

1.3 Part 2

We have seen that in order to solve the binary classification problem with the fewest number of
mistakes it is sufficient to compute the multivariate discriminant

D(x) = s(x)/[s(x) + b(x)], (1.29)

where s(x) and b(x) are the signal and background densities, respectively. Moreover, a cut on D(x) is equi-
valent to an (unknown) cut on the probability p(S|x) that an object characterized by the n-dimensional
variable x is of the class S. The class S could be, for example, the signal class in a signal/background
discrimination problem, or the electron class in an electron/fake-electron discrimination problem. Many
methods have been devised to approximate D(x), but none can be said to be superior to all other methods
for every conceivable classification problem. So beware of claims to the contrary. A sensible strategy is
to try a few methods [9] and use the one which, for the particular problem at hand, provides the best
discrimination. Of course, this presupposes that we have a way to assess the quality of the approximation,
and hence the discrimination. We shall return to this issue later.

Multivariate discrimination is a huge and rapidly evolving field for which an exhaustive survey would
require an entire book [10]. However, given the comments above about the goal of discrimination, it
suffices to limit discussion to a few classic methods, followed by a description of some interesting recent
developments. We shall not discuss neural networks in detail here because they are covered in the lectures
by Jerome Schwindling [11], nor shall we venture too far into a discussion of decision trees because they are
covered in detail in the lectures of Yann Coadou [12]. Moreover, to render our discussion more concrete we
shall continue to use the example of discrimination between signal and background events in high energy
physics. In the sections below, we cover the following broad class of methods :
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– Random Grid Search (RGS)
– Quadratic and Linear Discriminants
– Support Vector Machines
– Naïve Bayes
– Kernel Density Estimation
– Bayesian Neural Networks

1.3.1 Random Grid Search

The simplest way to classify events is to apply a cut to each component of an n-dimensional discrimi-
nating variable x. For decades this has been (and still is) the standard technique in high energy physics.
The n cuts comprise a cut-point. Geometrically, a cut-point is the apex of a surface built from planes,
parallel to each axis, that intersect at right-angles. For each cut-point, we compute the cost of misclassifi-
cation and we choose the one with the minimum cost. The simplest way to vary the cut-points is to move
systematically through a regular grid of them. However, this procedure becomes rapidly untenable as the
dimensionality n increases because the number of cut-points grows like Kn, where K is the number of
cuts along each axis. We encounter the infamous “curse of dimensionality.”

Happily, there is a very simple and an enormously more efficient way to choose the cut-points as
illustrated in Fig. 1.2. The figure shows a 2-dimensional space with x = (x1, x2) in which background
events tend to cluster near the origin, while signal events tend to cluster away from the origin. Since the
goal is to extract signal as efficiently as possible, the key idea is to place each cut-point at each signal
point, as provided, for example, by a Monte Carlo simulation of the signal. In this case, the number
of cut-points is independent of the dimensionality of the space of discriminating variables, being simply
the number of signal Monte Carlo events that are available for this purpose. The planes through each
cut-point still intersect at right-angles, but, since the cut-points are randomly distributed, these planes
form a random grid ; hence the name of this method : the random grid search [13].

Figure 1.2 – A cut-point is pla-
ced at each signal point (black
circles, filled-in red), as provided
by a Monte Carlo simulation of si-
gnal events, and a cost of mis-
classification (or some other cost)
is computed. The best cut-point is
the one with the lowest cost. Two
useful quantities to compute are
the signal and background efficien-
cies ǫS = #(after)/#(before) and
ǫB = #(after)/#(before), respecti-
vely, where “#(before)” and “#(af-
ter)” refer to the number of signal, or
background, events before and after
the cuts. These numbers can be plot-
ted against each other, as indicated,
and provide a visual way to compare
the efficacy of different multivariate
discriminants, independently of how
each is constructed.

Figure 1.3 shows how this method fares compared with a Bayesian neural network (described below).
In this example, the goal is to discriminate between 14 TeV proton-proton collision events generated using
an mSUGRA model [14] (with parameters : m0 = 3280 GeV, m1/2 = 300 GeV, A0 = 0, tan β = 10,
sign(µ) = +1, mtop = 175 GeV), in which the dominant reaction is gluino pair production, from the
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Standard Model (SM) backgrounds (light-jet QCD, tt̄, W+jets and Z+jets). The signal-to-background
ratio k = p(S)/p(B) after some basic cuts is predicted to be a daunting k ∼ 1/3000. Application of the
RGS algorithm to 5 kinematic variables (missing transverse energy, and the transverse momenta of the
four jets with the highest transverse momenta) yields the signal and background counts shown in Fig. 1.3.
Each point in the figure corresponds to a cut-point in the 5-dimensional space of discriminating variables.
The dashed curve is the locus of the signal and backgrounds counts determined by varying cuts on the
discriminant D(x), computed using a Bayesian neural network. The figure illustrates a typical result : the
random grid search can find cuts yielding good discrimination, but a properly constructed approximation
to D(x) always does at least as well as the cuts, and often much better.

Figure 1.3 – A comparison of si-
gnal and background counts for va-
rying cuts on a discriminant D(x)
computed using a Bayesian neural
network with those obtained using
the random grid search algorithm.
The event counts are based on simu-
lated proton-proton mSUGRA and
SM collision events at 14 TeV for an
integrated luminosity of 1 fb−1. See
text for more details.

1.3.2 Quadratic and Linear Discriminants

The random grid search is a considerable improvement over the regular grid. Moreover, in terms of
the computational resources needed it is competitive with other cut-finding algorithms such as those
based on genetic algorithms. However, as the example shown in Fig. 1.3 suggests, even the best cuts
may fall short of optimal discrimination, while the vast majority will fall far short. As noted in Part 1,
optimal discrimination requires the accurate calculation of the discriminant D(x) = s(x)/[s(x)+ b(x)], or
a one-to-one function thereof, such as the Bayes factor B(x) = s(x)/b(x).

One of the earliest examples of a successful multivariate discriminant is due to Fisher (see, for example,
Ref. [10]). One way to motivate the Fisher discriminant is to embed it within the theory sketched in
Part 1. Suppose we can approximate each density s(x) and b(x) as a multivariate Gaussian

Gaussian(x|µ,Σ) = exp[−(x − µ)T Σ−1(x − µ)/2]/(2π)n/2
√

|Σ|, (1.30)

where µ is a vector of means, Σ is the covariance matrix, and |Σ| its determinant. Since, as noted, we may
use any one-to-one function of D(x) (or B(x)), we consider for convenience the logarithm of the Bayes
factor B(x). After dropping non-essential constants, it may be written as

λ(x) = χ2(µB,ΣB) − χ2(µS ,ΣS), (1.31)

where χ2(µ,Σ) = (x−µ)T Σ−1(x−µ) and where the subscripts S and B label the quantities pertaining to
the signal and background, respectively. The quantity in Eq. (1.31) is called the quadratic discriminant.
A fixed value of λ(x) defines a hyper-paraboloidal decision boundary that divides the space into signal-rich
and background-rich regions. A cut on λ(x) provides optimal discrimination if the densities s(x) and b(x)
are indeed multivariate Gaussians. If they are not, λ(x) will not provide optimal discrimination, but it is
easy to compute and may still provide a useful measure of discrimination.

Fisher considered the situation in which the means for the two classes differ, but their covariance
matrices are identical ; for example, Σ = ΣS + ΣB . In this case, the quadratic discriminant reduces
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(modulo non-essential constants) to Fisher’s discriminant

λ(x) = w · x, (1.32)

as illustrated in Fig. 1.4, where the vector w is given by

w = Σ−1(µS − µB). (1.33)

This is the simplest multivariate discriminant, beyond ones based on cuts such as the random grid search,
and, like the quadratic discriminant, is easy to compute. We expect the Fisher discriminant to work well
for signal and background densities whose 3rd or higher order correlations are small.

Figure 1.4 – The Fisher discrimi-
nant is a hyper-plane, with orienta-
tion given by the vector w, that par-
titions the space of variables x into
two regions defined by the inequali-
ties w · x ≥ q and w· < q, where q is
an appropriate threshold.

1.3.3 Support Vector Machines

The Fisher discriminant is linear in the discriminating variables and therefore has the virtue of sim-
plicity. However, it may fail completely for highly non-Gaussian densities. In the early 1990s, a significant
advance occurred when it was recognized [1] that the linearity of the Fisher discriminant could be main-
tained, while achieving excellent discrimination even in highly non-Gaussian situations, if one can find a
suitable map, h : x ∈ R

n → z ∈ R
H , of the original n-dimensional space R

n of discriminating variables x
into a space R

H of very high, perhaps infinite, dimensions.

Consider 3 parallel hyper-planes, A, B and C, written, without loss of generality, as

w · h(x1) + b = +1 (1.34)

w · h(x) + b = 0 (1.35)

w · h(x2) + b = −1, (1.36)

respectively. Plane B lies between the other two planes, as showen in Fig. 1.5. Moreover, plane A contains
the point h(x1) and plane C the point h(x2). For now, we assume that the two classes of points are
perfectly separable and hence by construction no points lie between planes A and C. Subtracting the
equation for plane C from that of plane A yields w · [h(x1)−h(x2)] = 2, which in terms of the unit vector
ŵ = w/|w|, where |w| is its norm, becomes ŵ · [h(x1) − h(x2)] = 2/|w|. Plane B is called a separating

hyper-plane. Intuitively, the best separating hyper-plane maximizes the separation, that is the margin,
between planes A and C, m = 2/|w|. Therefore, the empirical risk function to be minimized may be
taken to be R(w) ∝ |w|2. However, during the minimization, we need to make sure that we keep signal
and background points separated. To that end, label points “above” plane A with the value y = +1 and
those “below” plane C with y = −1. Points “above” plane A will have w · h(x) + b > 1 and those “below”
plane C will have w · h(x) + b < −1. Consequently, all points will be correctly classified if the constraints
yi[w · h(xi) + b] ≥ 1,∀i = 1, · · · , N are satisfied, where N is the number of points in the training sample.
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Figure 1.5 – Planes A, B and C
are parallel with orientation given
by the unit vector ŵ normal to the
planes. The distance between planes
A and C, the margin, is just the pro-
jection of vector h(x1)−h(x2) in the
direction ŵ. Points “above” plane A
are assigned the value y = +1, while
points “below” plane C are assigned
the value y = −1.

Therefore, the cost function to be minimized may be written as

C(w, b, α) =
1

2
|w|2 −

N
∑

i=1

αi[yi(w · h(xi) + b) − 1], (1.37)

where the αi > 0 are Lagrange multipliers. When the cost function C(w, b, α) is minimized with respect
to w and b, it may be re-written in the form

C(α) =
N

∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyj[h(xi) · h(xj)]. (1.38)

The optimization problem has now been reduced to that of minimizing an expression quadratic in the
Lagrange multipliers, a problem that has been extensively studied [1]. At the minimum of C(α), most of
the Lagrange multipliers α will turn out to be zero. The non-zero multipliers are those corresponding to
points on the planes A and C ; these points are referred to as support vectors [1].

Unfortunately, in order to work with Eq. (1.38) two huge technical hurdles most be overcome. Firstly,
a suitable mapping h of the vector x to some high, perhaps infinite dimensional, vector space must be
found and secondly, an efficient way must be found to compute the scalar products of the vectors h(xi)
and h(xj). The crucial insight that renders support vector machines, as this method is called, practical is
that the scalar products h(xi) · h(xj) are equivalent to some kernel function K(xi, xj), that is, a function
which simultaneously maps a pair of vectors xi and xj to a space of perhaps infinite dimensions and
performs the scalar product of the corresponding high-dimensional vectors h(xi) and h(xj). In terms of
the kernel K(xi, xj), the cost function to be minimized is

C(α) =

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyjK(xi, xj). (1.39)

In practice, we usually do not know which mapping is best for a given problem and, consequently, we
do not know a priori which kernel to use. We are therefore obliged to proceed by trial and error : we
miminize the cost function using a few different standard kernels and use the one which gives the best
results. Moreover, since signal and background events are generally non-separable, even in an infinite
number of dimensions, we have to relax the constraints to (for example) yi(w · xi + b) ≥ 1− ζi, where the
ζi are called, appropriately, slack variables. This will lead to a modified version of Eq. (1.38) in which,
in addition to the coefficients αi, the cost function will depend on the slack variables ζi, whose values will
be determined during the miminization.

In expert hands, support vector machines can perform remarkably well, achieving discrimination close
to the Bayes limit. However, it is generally difficult for a non-expert to obtain consistently excellent results.
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1.3.4 Naïve Bayes

Every multivariate discrimination method that seeks to minimize the probability of classification errors
must approximate the discriminant D(x) = s(x)/[s(x) + b(x)], or some function thereof. Therefore, if we
had accurate approximations for the densities s(x) and b(x) our problem would be solved. One of the
most commonly used methods to approximate D(x), which goes under many names — the most common
being the misleading “likelihood discriminant,” is called naïve Bayes. The method is very simple : we
approximate each density as follows

s(x) ≈
n

∏

i=1

s1D(xi),

b(x) ≈
n

∏

i=1

b1D(xi), (1.40)

where x = (x1, x2, · · · , xn) and s1D and b1D are the 1-dimensional marginal densities of s(x) and b(x),
respectively ; that is, they are the projections of these densities onto the n axes x1 to xn. If the discrimina-
ting variables xi are statistically independent, then the approximation signs in Eq. (1.40) can be replaced
by equalities. Note that statistical independence is a more stringent condition than a lack of correlation.
Variables that are uncorrelated can still be statistically dependent 3. Nevertheless, this method can work
well if the degree of statistical dependence is not too great. Moreover, the approximations to s(x) and
b(x) are readily computed, using, for example, the next method to be discussed.

1.3.5 Kernel Density Estimation

As noted in the previous section, if it were possible to approximate the densities s(x) and b(x) with
sufficient accuracy, our task would be over. In this section, we describe briefly a method first introduced by
Parzens (see, for example, Refs. [2, 10]) in the 1960s, and developed subsequently by many people, called
kernel density estimation (KDE). This method, which is illustrated in Fig. 1.6, is conceptually simple. A

Figure 1.6 – A 1-dimensional
example of the KDE method. A ker-
nel with a suitably chosen width is
placed at each training data point.
The estimate of the density p(x) at
any point x (the vertical lines) is gi-
ven by the sum of the contributions
of all kernels at that point.

kernel function, K(x, µ), is placed at each training point µ. The density p(x) at point x is approximated
by the sum of the contributions from all the kernels,

p(x) ≈ p̂(x) =
1

N

N
∑

j=1

K(x, µj), (1.41)

where N is the number of points in the training sample. In principle, any kernel can be used. In practice,
most practitioners use diagonal multivariate Gaussians, K(x, µ) =

∏n
i=1 Gaussian(xi|µ, hi), each dimen-

sion of which may have a different width (usually referred to as bandwidth) hi. The method works in all
dimensions, but is typically most practical if the dimensionality is not too high. In particular, it works
very well in one dimension and can be used to implement the 1-dimensional densities of the naïve Bayes
method.

3. If variables are statistically independent, they are of necessity uncorrelated.
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The key to this method is choosing the bandwidth h (that is, width) of the kernel. If the bandwidth
is too narrow, the approximation will be very noisy. On the other hand, if the bandwidth were chosen too
wide, the approximation would lose fine structure that may be present in the density being approximated.
A considerable body of work exists on how these bandwidths should be chosen. For Gaussian densities, it
can be shown that (see, for example, Ref. [2])

h = σ

[

4

(n + 2)N

]1/(n+4)

(1.42)

is a good approximation to the optimal bandwidth in the sense that it minimizes the difference between
the estimate and the true density. However, this bandwidth is far from optimal for densities that are
highly non-Gaussian.

This point is illustrated in Fig. 1.7, which shows a kernel density estimate of the distribution of the
simulated jet variables pT , η, φ and pT (true), where pT and pT (true) are the reconstructed, and true, jet
transverse momenta, respectively. The bandwidths in each dimension are chosen according to Eq.(1.42). It
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Figure 1.7 – Projections of a 4-dimensional density (points with error bars) compared with projections
of a 4-dimensional KDE (dashed curve). The KDE uses bandwidths computed using Eq.(1.42). Clearly,
these bandwidths do not yield a satisfactory approximation.

is clear that this choice is not optimal. But, by a careful choice of bandwidths, the kernel density estimate
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can be improved considerably, as is evident from Fig. 1.8. One application of the 4-dimensional density
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Figure 1.8 – Projections of a 4-dimensional density (points with error bars) compared with projections
of a 4-dimensional KDE (dashed curve). The KDE uses somewhat better values for the bandwidths than
those used in Fig. 1.7, yielding a much better kernel density estimate of the underlying distribution.

p(pT , η, φ, pT (true)), along with p(pT , η, φ), is to create a jet transverse momentum correction function.
Traditionally, one assumes that the variables that determine the jet momentum correction function are
statistically independent, which may or may not be true. However, given accurate estimates of the densi-
ties, the conditional density p(pT (true)|pT , η, φ) = p(pT , η, φ, pT (true))/p(pT , η, φ) can be calculated. The
mean, or the mode, of this conditional density could be used as an estimate of the corrected jet transverse
momentum.

Why does the KDE method work ? Here is a heuristic argument. Consider the limit of Eq. (1.41) as
N → ∞,

p̂(x) =

∫

K(x, µ) p(µ) dµ, (1.43)

where p(µ) is the true density of the discriminating variable x. Presumably, just as would be done for
the bins of a histogram, the kernel bandwidths would be made progressively smaller as more and more
training data are used in the estimate p̂(x). Equation (1.42) shows that the optimal width (or rather an
approximation to it) does indeed decrease with increasing N . In the limit N → ∞, the kernels become
δ-functions : K(x, µ) → δn(x−µ) and, consequently, p̂(x) = p(x). The KDE method provides a consistent
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estimate of any reasonably behaved density.
In principle, any kernel will do provided that its width decreases with increasing size of the training

sample. However, if the sample size is inadequate, the KDE method tends not to handle sharp structures
accurately, such as boundaries ; the method tends to smooth things out. One way to improve accuracy,
is to make the kernel width adapt to its local environment : where points are widely spread, a large
bandwidth is used ; where data are tightly clustered, narrower kernels are used. Needless to say, there are
many variations on this theme. However, these are merely refinements on what is fundamentally a simple
idea.

1.3.6 Ensemble Learning

Until recently, the principal goal of developers of multivariate discrimination methods was finding
effective methods to produce discriminants that performed near the Bayes limit. However, in the 1990s,
the realization by Freund and Schapire [15] that high performance discriminants can be built by averaging
over an ensemble of weakly performing ones — that is, averaging over weak classifiers that perform
only marginally better than random guessing — has led to an explosion of methods that entail various
kind of averaging.

Friedman and Popescu [5] have shown, however, that these methods can be embedded within a general
theoretical framework they call ensemble learning in which the discriminant can be represented by a
weighted average

f(x) =
K

∑

i=1

akf(x,wk). (1.44)

Each method, is characterized by the choice of weak classifiers, f(x,wk), and the choice of coefficients ak.
The three most successful ensemble methods, bagging [6], random forest [7], and boosting [15] use
decision trees [12, 16, 17, 18, 19] as the weak classifiers :

– bagging (bootstrap aggregating) uses the coefficients ak = 1/N , that is, a simple average is
performed, where N is the number of trees — with each tree trained on a different bootstrap
sample 4 drawn from the training sample ;

– random forest is bagging with the randomization of each tree, for example, by selecting a random
subset of discriminating variables at each binary split within the tree, and

– boosting uses a particular form for the coefficients ak, with each tree grown using a different
weighting of the full training sample.

Although these methods use trees, in principle, they can be used with any weak classifier. Bagging can be
applied to any classifier, while random forests can be applied to classifiers for which some randomization
in their construction can be introduced. Boosting can be applied to any classifier that can make use of
event-by-event weights.

AdaBoost

Decision trees are described in detail elsewhere in these proceedings [12], therefore, here we restrict
our discussion of them to a few comments. Geometrically, a decision tree is simply an n-dimensional
histogram. The cleverness is in how the bins of this histogram are constructed : they are constructed
by recursively partitioning the space of discriminating variables. As is true of any histogram, a value is
assigned to each bin (or leaf of the tree). For example, by counting how many signal and background
events from the training sample contributed to a given bin, we could assign the value y = −1 if the
background count was larger than the signal count or y = +1 if the reverse was true. Or we may wish to
assign the value y = s/(s + b), to approximate the discriminant D(x) in the neighborhood of the point x,
where s and b are the signal and background counts, respectively, in a given bin.

Decision trees are very fast to create compared with methods such as neural networks. Moreover, the
reason why a particular event has been classified either as a signal or as a background event can be readily
discerned from the sequence of if - then - else statements that comprise the decision tree. However,
since a decision tree is a histogram, it provides only a piece-wise constant approximation to the function

4. A bootstrap sample is one drawn from another sample with replacement.
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of interest, say D(x). Therefore, if we want a smoother approximation we need to reduce the bin sizes,
while simultaneously increasing the training sample size. Another way to produce a smoother, as well as
better, approximation to the function of interest is to average over an ensemble of trees — a forest, if you
will !

The AdaBoost (Adaptive Boosting [15]) algorithm is one of the most successful ensemble methods.

Figure 1.9 – This shows the event
classification error rate as a function
of the number of decision trees over
which the boosted classifier has been
averaged. It is striking that the er-
ror rate on the training sample goes
exponentially to zero, while the er-
ror rate on an independent testing
sample remains essentially constant.

The algorithm, in its original form, is based on decision trees f(x,w) with binary values ±1 and targets
y = ±1. For a correct classification, the product f(x,w)y is positive, while for an incorrect one it is
negative. Given this observation, the algorithm proceed as follows

initialize weights wk

repeat K times :

1. create a decision tree fk = f(x,wk)

2. compute its error fraction ǫk on the current training sample

3. set ak = ln[(1 − ǫk)/ǫk]

4. scale the weight of the nth training event by the factor

exp(−akf(xn, wk)yn/2)/
N

∑

i=1

ωi exp(−akf(xi, wk)yi/2),

that is, increase the weight of incorrectly classified events relative to those that are correctly classi-
fied.

compute f(x) using Eq. (1.44).

Algorithms that progressively focus on incorrectly classified items are referred to generically as boosting

algorithms. A classifier, for example sign(f(x)), where f(x) is given in Eq. (1.44), created through boosting
is called a boosted classifier. The AdaBoost algorithm is as cryptic as it is remarkable. Figure 1.9 shows
the results of applying AdaBoost to separate mSUGRA [14] events from tt̄ events at the LHC. It is
striking that when the boosted classifier is applied to the training sample, the error rate decreases to zero
exponentially as the number of trees over which one averages increases. Indeed, it seems that given a
sufficient number of trees, every training event would be classified perfectly. But what is truly remarkable,
as shown in Fig. 1.9, is that the error rate of the boosted classifier, when applied to an independent

testing sample, remains essentially constant even as error rate on the training sample goes to zero ! A
classifier that achieves an error rate close to zero on the training sample typically performs very badly
on an independent set of events. This is true of all other classifiers, but it appears not to be true of
those constructed using AdaBoost. One expects the AdaBoost algorithm to overtrain eventually. What is
startling, is how far one can go before this happens. This extraordinary robustness to overtraining has
been observed repeatedly. But, as yet, this behaviour has not been explained to everyone’s satisfication
(but see, for example, Ref. [20]).
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1.3.7 Bayesian Neural Networks

The final method to be considered, Bayesian neural networks (BNN) [3, 21], is as the name implies
one that embraces fully the Bayesian approach, which is to infer functions f(x). Bayesian neural networks
were deployed for the first time in the search for single top quark production at the Tevatron [17, 18].
In general, a BNN is simply the predictive distribution, Eq.(1.5), in which the function class is the class
of feedforward neural networks with a fixed structure. However, as used by particle physicists [21], a
BNN designed for classification is taken to be the mean of the predictive distribution, that is, it is the
function

y(x) =

∫

z p(z|x, T )dz,

=

∫

f(x,w)p(w|T )dw. (1.45)

The second line follows from the form of the single-event likelihood function that the BNN method uses for
classification, namely, p(y|x,w) = f(x,w)y [1−f(x,w)]1−y , where the target y is binary-valued, y ∈ {0, 1}.
By definition, y = 1 labels a signal event, while y = 0 labels background events. When y = 1, the likelihood
function is p(y|x,w) = f(x,w) and it is 1 − f(x,w) when y = 0 ; therefore, only f(x,w) contributes to
the mean of the predictive distribution, Eq. (1.45). The explicit function class used in Refs. [17] and [18],
available by default in the Flexible Bayesian Modeling (FBM) software by Neal [3], is

f(x,w) =
1

1 + exp[−g(x,w)]
, (1.46)

where

g(x,w) = b +
H

∑

j=1

vj tanh(aj +
n

∑

i=1

ujixi), (1.47)

where n is the dimensionality of the discriminating variables x, that is, the inputs, and H is the number of
hidden nodes. In neural network-based applications, the parameters w = (b, v, a, u) are generally referred
to as weights.

In realistic applications, the dimensionality of the parameter space of the functions f(x,w) can number
in the hundreds, precluding the use of standard (typically, adaptive) numerical integration methods, which
are limited to dimensions no greater than about twenty. A feasible way to approximate the integral in
Eq.(1.45) is by a Markov Chain Monte Carlo (MCMC) method, such as that implemented in the FBM

software [3]. In the FBM software, an MCMC method is used to generate a sample of points, w1, w2, · · · , wM ,
from the posterior density p(w|T ). The integral, Eq.(1.45), is then approximated by the average

y(x) ≈ 1

M

M
∑

m=1

f(x,wm), (1.48)

where M is the number of points sampled from p(w|T ). If the Markov chain has converged — that
is, the sampled points {wj} are a representative sample from p(w|T ), then Eq. 1.48 yields an unbiased
estimate of the integral. However, because adjacent MCMC points are highly correlated, the average is
often calculated using a sparse subset of the sampled points. Since the correlation of this sparse set is
generally much lower than that of the original set of points, it somewhat easier to estimate how accurately
the integral Eq. (1.45) has been approximated using Eq. (1.48).

We noted above the difficulty in specifying a prior over a space of functions. Instead, a prior density
π(w) is specified over the parameter space of the neural networks. Unfortunately, this is still a very difficult
problem. What is done in practice is to use some plausible choice for the prior that captures some aspect
of what is thought to be a sensible property, such as smoothness of approximation. In the FBM package, the
prior is a product of zero-centered Gaussians, one for each parameter, with appropriately chosen widths.
The FBM package provides mechanisms for setting the widths dynamically as the chain progresses.

We end with a simple 1-dimensional example of the construction of a BNN. Figure 1.10 shows distri-
butions of the sum of (scaled) transverse momenta (HT ) for single top quark signal and background events
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Figure 1.10 – Distributions of the
sum of transverse momenta (HT ) for
single top quark signal and back-
ground events in the 2-jet final state
(see Ref. [18]). The sum of the si-
gnal and background distributions
has been scaled to have zero mean
and unit variance and each distribu-
tion is normalized to the same area.

with exactly 2 jets in the final state [18]. The function class used is the class of neural networks with a
single hidden layer of H = 20 nodes. The training sample comprised 1000 signal plus 1000 background
events. A sparse set of M = 50 sampled points were used in the average, Eq.(1.48). In Fig. 1.11 is plotted
the 50 functions f(x,wk), corresponding to the 50 saved points wk. Since the training sample contains

Figure 1.11 – Each curve is a plot
of f(x,wk), where k indexes one
MCMC parameter point, while the
thick curve is their average as a
function of x. The points are cal-
culated from the bin-by-bin ratio of
H(x|S)/[H(x|S) + H(x|B)], where
H(x|S) and H(x|B) are the signal
and background histograms, respec-
tively. This ratio provides a direct
approximation of the discriminant
D(x) = p(x|S)/[p(x|S) + p(x|B)].
By construction, so does each func-
tion f(x,wk). It is evident, however,
that their average provides a bet-
ter approximation to the discrimi-
nant D(x) than any of the individual
functions.

equal numbers of signal and background events, each function f(x,wk) approximates the discriminant
D(x) = p(x|S)/[p(x|S) + p(x|B)]. Since this is a 1-dimensional problem, the discriminant D(x) can be
approximated directly by computing the ratio H(x|S)/[H(x|S)+H(x|B)], bin-by-bin, where H(x|S) and
H(x|B) are the signal and background histograms, respectively, of the variable x. The large scatter at
large values of x is due to the low counts in the tails of the distributions shown in Fig. 1.10. The set of
functions shown in Fig. 1.11 constitute the predictive distribution, Eq.(1.5). As is evident from Fig. 1.11,
the mean of the predictive distribution as a function of x, that is, the BNN as it is defined in particle
physics, provides a good overall estimate of D(x). Moreover, an estimate of how well D(x) has been
approximated can be computed from the scatter, as a function of x, of the functions f(x,wk).

1.4 Outstanding Issues

Multivariate discrimination methods have been used with considerable success in particle physics and
are likely to continue to be indispensable for many analyses in the LHC era. Like all powerful tools,
however, these methods must be used with due care. To that end, this requires the expenditure of some
effort to understand what these methods can and cannot do. However, even though the methods are
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mathematically well-founded, and are the object of an enormous amount of active research, there are still
important open questions and issues for which progress is sorely needed, a few of which are listed below.

– How can one verify that a discriminant function f is close to the Bayes limit ?
– A related question is : how can one confirm that an n-dimensional density s(x) is well-modeled ?

This is important for any analysis.
– If a sub-domain of a density s(x) is not well-modeled, how can one find, characterize, and exclude,

discrepant sub-domains in n-dimensions automatically ?
– How can one automate re-weighting of model data, event-by-event, in order to improve the match

between real data and the model ?
– Is there a practical way to quantify the information content of a sample of signal and background

data so that when these data are compressed it is possible to assess how much information has been
lost ?

– Is there a practical way to use multivariate discrimination when one does not know where to look
for signals ?

At present, we are aware of only heuristic answers to some of these questions. One such heuristic
answer is based on the known form of the discriminant, namely, D(x) = s(x)/[s(x) + b(x)]. Suppose we
have constructed what we believe to be an accurate approximation, f̂(x), of D(x). Then we would expect
to recover the signal density s(x) by weighting an admixture of signal and background events, with signal
to background ratio k, with the weight function w(x) = f̂(x)/[f̂ (x)+ (1− f̂(x))/k]. Moreover, this should
hold true for all values of k, in particular, for k = 1. This is a necessary condition for any discriminant
that is close to the Bayes limit. It is not clear, however, that it is sufficient and for this reason remains a
heuristic. Nevertheless, it has proven to be a particularly useful one in practice [18].

1.5 Conclusion

In this paper, we surveyed the theory and practice of multivariate discrimination. In so doing, the
hope is that some light has been shed on methods that are often viewed as black boxes. We showed that
if the goal is classification with the fewest errors, or the extraction of signal with the smallest uncertainty,
the principal task is to approximate the discriminant D(x) = s(x)/[s(x)+b(x)]. All classification methods
that share this goal are therefore equivalent and none is best in all circumstances. We have not dwelled
at all on the algorithms for minimizing the various cost functions discussed. This was done deliberately :
a distinction should be made between the results of a multivariate discrimination method, which is to
furnish an approximation to some function of D(x), and the algorithm used to minimize the cost function.
A cost function can be minimized in many ways. The fact that in one case a genetic algorithm is used
to minimize a cost function while in another case the back-propagation method is used does not alter
the fact that what is being approximated is D(x), in both cases. If minimizing classification errors is not
the goal, however, then the discriminant D(x) may not be the optimal function to use. The relevant cost
function can still be minimized using any of a number of algorithms. But in general the resulting decision
boundary will not have a simple probabilistic interpretation.

We have argued that machine learning and Bayesian learning are closely related. The difference is more
one of emphasis : machine learning looks for the best fit while Bayesian learning focuses on averaging.
However, with the advent of ensemble learning, ensemble averaging is now a feature of both the machine
learning and Bayesian learning approaches.
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