SUperSYmmetry A Report from the Front

Harrison B. Prosper Florida State University SESAPS, University of Virginia 10 November 2016

This work is supported in part by the

Office of Science

Outline

Introduction

- □ What is supersymmetry?
- □ What have we learned?
- Summary & Conclusions

Outline

Introduction

- □ What is supersymmetry?
- □ What have we learned?
- Summary & Conclusions

Introduction

The most significant result from the LHC is clearly the discovery of the neutral scalar Higgs boson.

 $m_H = 125.09 \pm 0.21 \pm 0.11$ GeV CMS & ATLAS, Phys. Rev. Lett. **114**, 191803 (2015)

Introduction

But, also of potentially monumental significance is the absence (so far) of credible evidence for new physics, in particular, for supersymmetry.

If, by the end, of the LHC era it is shown that supersymmetry is irrelevant at the TeV scale, this would be a profound discovery. It might signal that an understanding of physics the TeV scale requires an understanding of physics at a scale many orders of magnitude greater.

Takemichi Okui

Introduction

But, we are not yet able to dismiss the supersymmetry hypothesis and many particle physicists remain gung-ho about it!

Outline

Introduction

□ What is supersymmetry?

- What have we learned?
- Summary & Conclusions

What is Supersymmetry?

A supersymmetry operation Q transforms a bosonic state into a fermionic one and vice versa:

Q |boson> = |fermion>

Q |fermion> = |boson>

By adding appropriate structures to the Standard Model, it is possible to create versions of it that are invariant under this operation. The simplest such model is called the minimal supersymmetric extension of the SM (MSSM).

But, why do this? The SM is, after all, spectacularly successful.

What is Supersymmetry?

Here are the principal reasons:

1. In the SM, the quantum correction to the Higgs boson mass is given by

$$m_{H}^{2} = -m_{\text{bare}}^{2} + \frac{y_{t}^{2}}{16\pi^{2}}\Lambda^{2} + \cdots \qquad y_{\Lambda}^{m}$$

Langrangian parameter top Yukawa coupling cut-off

Since, in principle, $\Lambda \sim 10^{18}$ GeV, one has to fine-tune the bare mass parameter with enormous precision in order to get the measured value of the Higgs boson mass.

bare

However, fine-tuning is unnecessary in a theory invariant under supersymmetry because such terms cancel *exactly*.

What is Supersymmetry?

2. In a supersymmetric theory, it is possible to arrange for the coupling constants of the three forces to unify at a scale $\sim O(10^{16})$ GeV.

Stephen P. Martin, https://arxiv.org/pdf/hep-ph/9709356.pdf

The quantum number (R-parity)

= (1) (D I) + C	B	Baryon number
$R = (-1)^{3(B-L)+S}$	L	Lepton number
		~ •

is +1 for every SM particle and -1 for every supersymmetric particle (or super-particle, or sparticle)

Spin

In the usual definition of the MSSM, R-parity is <u>conserved</u>. Consequently, super-particles are predicted to be created in *pairs* and the lightest is absolutely stable. If the lightest super-particle (LSP) is *neutral* and *weakly* interacting, it is a dark matter candidate.

Supersymmetric Particle Content:

neutralinos	$ ilde{\chi}^0_1$, $ ilde{\chi}^0_2$, $ ilde{\chi}^0_3$, $ ilde{\chi}^0_4$	1/2	
charginos	$ ilde{oldsymbol{\chi}}_1^{\pm}$, $ ilde{oldsymbol{\chi}}_2^{\pm}$	1/2	Fermions
gluinos	$ ilde{g}$	1/2	
Higgs bosons	$h^{0}, H^{0}, A^{0}, H^{\pm}$	0	
sleptons	$ ilde{e}_{L,R}, ilde{\mu}_{L,R}, ilde{ au}_{1,2}$	0	
	${ ilde {m u}}_e, { ilde {m u}}_\mu, { ilde {m u}}_ au$	0	Bosons
squarks	$\tilde{u}_{L,R}, \tilde{c}_{L,R}, \tilde{t}_{1,2}$	0	
	$\widetilde{d}_{L,R}, \widetilde{s}_{L,R}, \widetilde{b}_{1,2}$	0	

Hadron collider reactions:

Electroweak

 $q \vec{q}
ightarrow \widetilde{\chi}_i^+ \widetilde{\chi}_j^-, \quad \widetilde{\chi}_i^0 \widetilde{\chi}_j^0, \quad \widetilde{l}_i^+ \widetilde{l}_j^-, \quad \widetilde{v}_l \widetilde{v}_l^*$ $ud \to \tilde{\chi}_i^+ \tilde{\chi}_j^0, \quad \tilde{l}_L^+ \tilde{v}_l$ $d\overline{u}
ightarrow \widetilde{\chi}_i^- \widetilde{\chi}_j^0, \quad \widetilde{l}_L^- \widetilde{\nu}_l^*$ Strong $gg
ightarrow ilde{g} ilde{g}, \quad ilde{q}_i ilde{q}_j^*$ g $q \vec{q}
ightarrow ilde{g} ilde{g}, \quad ilde{q}_i ilde{q}_i^*$ $gq \rightarrow \tilde{g}\tilde{q}_i$ $qq \rightarrow \tilde{q}_i \tilde{q}_j$

* antiparticles

No supersymmetric particles with the same mass as the corresponding SM particle have been found, therefore, the ground state of the Universe is clearly not supersymmetric.

In order to accommodate this fact, extra structure has been added to the MSSM (and its variants), consistent with the symmetry of the SM, that breaks (or hides) the supersymmetry.

Alas, this causes the number of parameters to explode from the 19 of the SM to the 19 + 105 = 124 of the MSSM!

Model	# Pars
mSUGRA	3
CMSSM	4
NUHM1	5
NUHM2	6
SU(5)	7
pMSSM	19
MSSM	124

Outline

Introduction

- □ What is supersymmetry?
- What have we learned?
- □ Summary & Conclusions

Interpretation Using Simplified Models

Supersymmetry search results at the LHC are often interpreted in terms of simplified models (SMS) or models that posit specific SUSY-breaking schemes, e.g., the constrained MSSM (CMSSM).

simplified models

Typical Hadron Observables

$$\vec{p}_T^{\text{miss}} + \sum_{\text{iets}} \vec{p}_{T,i} + \sum_{\text{leptons}} \vec{p}_{T,i} + \sum_{\text{photons}} \vec{p}_{T,i} = 0, \quad E_T^{\text{miss}} = \left| \vec{p}_T^{\text{miss}} \right|$$

 $H_T = \sum_{\text{jets}} \left| \vec{p}_{T,i} \right|$

$$S_T = \sum_{\text{jets}} \left| \vec{p}_{T,i} \right| + E_T^{\text{miss}}$$

$$\boldsymbol{m}_{T} = \sqrt{2p_{T,l}} E_{T}^{\text{miss}} [1 - \cos \Delta \phi(\vec{p}_{T,l}, \vec{p}_{T}^{\text{miss}})]$$

$$M_{R} = \sqrt{(p_{j1} + p_{j2})^{2} - (p_{j1,z} + p_{j2,z})^{2}}$$
$$R^{2} = \left(E_{T}^{\text{miss}}(p_{j1,T} + p_{j2,T}) - \vec{p}_{T}^{\text{miss}} \cdot (\vec{p}_{j1} + \vec{p}_{j2})\right) / \left(2M_{R}^{2}\right)$$

Chris Rogan, "Kinematical variables towards new dynamics at the LHC" arXiv:1006.2727v2

Example: CMS Search Using Razor

Search using boosted W bosons and razor variables

$$m_{\tilde{g}} = 1 \text{ TeV}, m_{\tilde{t}_1} = 0.325 \text{ TeV}, m_{\tilde{\chi}_1^0} = 0.300 \text{ TeV}$$

CMS collaboration, "Search for supersymmetry in pp collisions at \sqrt{s} = 8 TeV in final states with boosted W bosons and b jets using razor variables", Phys. Rev. D **93** (2016) 092009

Signal Region S Control Regions W W boson Q QCD T top

Control regions used to model background in signal region

CMS collaboration, "Search for supersymmetry in pp collisions at \sqrt{s} = 8 TeV in final states with boosted W bosons and b jets using razor variables", Phys. Rev. D **93** (2016) 092009

ATLAS SUSY Searches* - 95% CL Lower Limits Status: August 2016

	Model	e, μ, τ, γ	/ Jets	E ^{miss} T	$\int \mathcal{L} dt [fb]$	⁻¹] Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ (\text{compressed}) \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{g} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q Q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g} \rightarrow q \tilde{\chi} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}$	$\begin{array}{c} 0{\rm -3} \ e,\mu/1{\rm -2} \ \tau \\ 0 \\ {\rm mono-jet} \\ 0 \\ 0 \\ 3 \ e,\mu \\ 2 \ e,\mu \ ({\rm SS}) \\ 1{\rm -2} \ \tau + 0{\rm -1} \\ 2 \ \gamma \\ \gamma \\ 2 \ e,\mu \ ({\rm Z}) \\ 0 \end{array}$	2-10 jets/3 ℓ 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets ℓ 0-2 jets - 1 ℓ 2 jets 2 jets 2 jets persono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 3.2 13.3 13.3 13.2 13.2 3.2 3.2 20.3 13.3 20.3 20.3	\$\bar{q}\$ \$\bar{q}\$ \$\bar{q}\$ \$\begin{aligned}{llllllllllllllllllllllllllllllllllll	1.85 TeV 1.35 TeV 1.35 TeV 1.86 TeV 1.83 TeV 1.7 TeV 1.6 TeV 2.0 TeV 1.65 TeV 1.37 TeV 1.8 TeV	$\begin{split} &m(\tilde{q})\!=\!m(\tilde{g}) \\ &m(\tilde{\xi}^0_1)\!<\!200~\text{GeV}, \ m(1^{st}~\text{gen},\tilde{q})\!=\!m(2^{nd}~\text{gen},\tilde{q}) \\ &m(\tilde{\xi}^0_1)\!<\!20~\text{GeV} \\ &m(\tilde{\xi}^0_1)\!=\!0~\text{GeV} \\ &m(\tilde{\xi}^0_1)\!<\!400~\text{GeV}, \ m(\tilde{\xi}^\pm)\!=\!0.5(m(\tilde{\xi}^0_1)\!+\!m(\tilde{g})) \\ &m(\tilde{\xi}^0_1)\!<\!400~\text{GeV} \\ &m(\tilde{\xi}^0_1)\!<\!500~\text{GeV} \\ &cr(NLSP)\!<\!0.1~\text{mm} \\ &m(\tilde{\xi}^0_1)\!<\!950~\text{GeV}, \ cr(NLSP)\!<\!0.1~\text{mm}, \ \mu\!<\!0 \\ &m(\tilde{\xi}^0_1)\!<\!860~\text{GeV}, \ cr(NLSP)\!<\!0.1~\text{mm}, \ \mu\!>\!0 \\ &m(MLSP)\!\!>\!\!430~\text{GeV} \\ &m(\tilde{G})\!>\!1.8\times10^{-4}~\text{eV}, \ m(\tilde{g})\!=\!m(\tilde{g})\!=\!1.5~\text{TeV} \end{split}$	1507.05525 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{1} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	2 2 2 2	1.89 TeV 1.89 TeV 1.37 TeV	m(\tilde{k}_1^0)=0 GeV m(\tilde{k}_1^0)=0 GeV m(\tilde{k}_1^0)<300 GeV	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 0.2 \ e, \mu \\ 0.2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 \ e, \mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes Yes Yes Yes Yes	3.2 13.2 4.7/13.3 4.7/13.3 3.2 20.3 13.3 20.3	b1 840 GeV b1 325-685 GeV A17-170 GeV 200-720 GeV 71 90-198 GeV 205-850 GeV 71 90-323 GeV 205-850 GeV 71 90-323 GeV 200-720 GeV 72 290-700 GeV 72 320-620 GeV		$\begin{split} &m(\tilde{\mathcal{K}}_{1}^{0})\!<\!100~\text{GeV} \\ &m(\tilde{\mathcal{K}}_{1}^{0})\!<\!150~\text{GeV}, m(\tilde{\mathcal{K}}_{1}^{\pm})\!=\!m(\tilde{\mathcal{K}}_{1}^{0})\!+\!100~\text{GeV} \\ &m(\tilde{\mathcal{K}}_{1}^{0})\!=\!2m(\tilde{\mathcal{K}}_{1}^{0}), m(\tilde{\mathcal{K}}_{1}^{0})\!=\!55~\text{GeV} \\ &m(\tilde{\mathcal{K}}_{1}^{0})\!=\!1~\text{GeV} \\ &m(\tilde{\mathcal{K}}_{1}^{0})\!>\!150~\text{GeV} \\ &m(\tilde{\mathcal{K}}_{1}^{0})\!>\!150~\text{GeV} \\ &m(\tilde{\mathcal{K}}_{1}^{0})\!=\!0~\text{GeV} \end{split}$	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2016-038 1506.08616
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\mathcal{K}}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \ell _{1} \nu \tilde{\ell}_{1} (\ell (\tilde{\nu} \nu), \tilde{\nu} \tilde{\ell}_{1} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \mathcal{W}_{2}^{0} \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \mathcal{W}_{2}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \rightarrow \mathcal{W}_{2}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \rightarrow \mathcal{W}_{2}^{0} \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \rightarrow \mathcal{W}_{2}^{0} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \end{pmatrix} \text{ weak prod} $	$\begin{array}{c} 2 e, \mu \\ 2 e, \mu \\ 2 \tau \\ 3 e, \mu \\ 2 \cdot 3 e, \mu \\ e \cdot \mu, \gamma \\ 4 e, \mu \\ \cdot \\ 1 e, \mu + \gamma \\ 2 \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3		$m(\bar{x}_{1}^{0})=0$ V $m(\bar{x}_{1}^{+})=n$ $m(\bar{x}_{2}^{0})=n$	$\begin{split} & m(\tilde{\mathcal{K}}_1^0) {=} 0 GeV \\ & GeV, m(\tilde{\xi}, \tilde{v}) {=} 0.5(m(\tilde{\xi}_1^+) {+} m(\tilde{\xi}_1^0)) \\ & m(\tilde{\xi}_1^0) {=} 0 GeV, m(\tilde{\xi}, \tilde{v}) {=} 0.5(m(\tilde{\xi}_1^+) {+} m(\tilde{\xi}_1^0)) \\ & i(\tilde{\xi}_2^0), m(\tilde{\xi}_1^0) {=} 0, m(\tilde{\xi}, \tilde{v}) {=} 0.5(m(\tilde{\xi}_1^0) {+} m(\tilde{\xi}_1^0)) \\ & m(\tilde{\xi}_1^-) {=} m(\tilde{\xi}_2^0), m(\tilde{\xi}_1^0) {=} 0, \tilde{\delta} decoupled \\ & m(\tilde{\xi}_1^+) {=} m(\tilde{\xi}_2^0), m(\tilde{\xi}_1^0) {=} 0, \tilde{\delta} decoupled \\ & d(\tilde{\xi}_2^0), m(\tilde{\xi}_1^0) {=} 0, m(\tilde{\delta}, \tilde{v}) {=} 0.5(m(\tilde{\xi}_2^0) {+} m(\tilde{\xi}_1^0)) \\ & cr {<} 1 mm \\ & cr {<} 1 mm \end{split}$	1403.5294 ATLAS-CONF-2016-096 ATLAS-CONF-2016-093 ATLAS-CONF-2016-096 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\tilde{X}_1^+\tilde{X}_1^-$ prod., long-lived $\tilde{\lambda}$ Direct $\tilde{X}_1^+\tilde{X}_1^-$ prod., long-lived $\tilde{\lambda}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{X}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau$ GMSB, $\tilde{X}_1^0 \rightarrow \gamma \tilde{G}$, long-lived \tilde{X}_1^0 $\tilde{g}\tilde{g}, \tilde{X}_1^0 \rightarrow eev(e\mu\nu/\mu\nu)$ GGM $\tilde{g}\tilde{g}, \tilde{X}_1^0 \rightarrow Z\tilde{G}$		1 jet - 1-5 jets - - - - - - - - - - - - - - - - - - -	Yes Yes - - Yes - Yes	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.58 TeV 1.57 TeV V	$\begin{split} &m(\vec{k}_1^{-})-m(\vec{k}_1^{0})\sim 160 \; MeV, \; \tau(\vec{k}_1^{+})=0.2 \; ns \\ &m(\vec{k}_1^{-})-m(\vec{k}_1^{0})\sim 160 \; MeV, \; \tau(\vec{k}_1^{-})<15 \; ns \\ &m(\vec{k}_1^{0})=100 \; GeV, \; 10 \; \mus < \tau(\vec{k}) < 1000 \; s \\ &m(\vec{k}_1^{0})=100 \; GeV, \; \tau>10 \; ns \\ &10 < tag < 50 \\ &10 < tag < 50 \\ &1 < \tau(\vec{k}_1^{0}) < 3 \; ns, \; SPS8 \; model \\ &7 < \tau(\vec{k}_1^{0}) < 740 \; nm, \; m(\vec{k})=1.3 \; TeV \\ &6 < c\tau(\vec{k}_1^{0}) < 480 \; nm, \; m(\vec{k})=1.1 \; TeV \end{split}$	1310.3675 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \bar{\mathbf{v}}_{\tau} + X, \bar{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \bar{x}^{\dagger}_{1}\bar{x}^{\dagger}_{1} \rightarrow W\bar{x}^{0}_{1} \bar{x}^{0}_{1} \rightarrow we \\ \bar{x}^{\dagger}_{1}\bar{x}^{\dagger}_{1}, \bar{x}^{\dagger}_{1} \rightarrow W\bar{x}^{0}_{1} \bar{x}^{0}_{1} \rightarrow erv, e\muv, \\ \bar{x}^{\dagger}_{1}\bar{x}^{\dagger}_{1}, \bar{x}^{\dagger}_{1} \rightarrow W\bar{x}^{0}_{1} \bar{x}^{0}_{1} \rightarrow i\tau \\ \bar{x}^{\dagger}_{2} \bar{s}^{\dagger}_{2} \bar{s}^{\dagger}_{2} qq \\ \bar{g}\bar{s}, \bar{g} \rightarrow q\bar{q}^{\dagger}_{1} \bar{x}^{0}_{1} \rightarrow qqq \\ \bar{g}\bar{s}, \bar{g} \rightarrow d\bar{q}\bar{x}^{\dagger}_{1}, \bar{x}^{0}_{1} \rightarrow qqq \\ \bar{g}\bar{s}, \bar{g} \rightarrow d\bar{x}^{\dagger}_{1}, \bar{x}^{\dagger}_{1} \rightarrow bs \\ \bar{t}_{1}\bar{t}_{1}, \bar{t}_{1} \rightarrow bs \\ \bar{t}_{1}\bar{t}_{1}, \bar{t}_{1} \rightarrow bs \end{array} $	$\begin{array}{c} e\mu, e\tau, \mu\tau \\ 2 \ e, \mu \ (SS) \\ \mu\mu\nu & 4 \ e, \mu \\ \tau & 3 \ e, \mu + \tau \\ 0 & 4 \\ 1 \ e, \mu & 8 \\ 1 \ e, \mu & 8 \\ 0 \\ 2 \ e, \mu \end{array}$		Yes Yes Yes ets - ets - b - b - b -	3.2 20.3 13.3 20.3 14.8 14.8 14.8 14.8 14.8 15.4 20.3	\$\vec{v}_r\$ 1.1 \$\vec{u}_1\$ 450 GeV \$\vec{u}_1\$ 1.08 \$\vec{u}_2\$ 1.08 \$\vec{u}_2\$ 1.08 \$\vec{u}_2\$ 1.08 \$\vec{u}_2\$ 1.08 \$\vec{u}_2\$ 1.08 \$\vec{u}_2\$ 0.410 GeV	1.9 TeV 1.45 TeV 4 TeV 1.55 TeV 1.55 TeV 1.4 TeV V	$ \begin{split} & \lambda_{311}^{c} = 0.11, \ \lambda_{132/133/233} = 0.07 \\ & m(\tilde{g}) = m(\tilde{g}), \ c_{TLSP} < 1 \ mm \\ & m(\tilde{k}_{1}^{0}) > 400 \text{GeV}, \ \lambda_{123} \neq 0 \\ & m(\tilde{k}_{1}^{0}) > 0.2 \times m(\tilde{k}_{1}^{0}), \ \lambda_{133} \neq 0 \\ & \text{BR}(t) = \text{BR}(t) = \text{BR}(c) = 0\% \\ & m(\tilde{k}_{1}^{0}) = 800 \ \text{GeV} \\ & m(\tilde{k}_{1}^{0}) = 800 \ \text{GeV} \\ & m(\tilde{k}_{1}^{0}) = 700 \ \text{GeV} \\ & \text{625 GeV} < m(\tilde{t}_{1}) < 850 \ \text{GeV} \\ & \text{BR}(\tilde{t}_{1} \rightarrow be/\mu) > 20\% \end{split} $	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094
<u>Other</u>	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	č 510 GeV		m(𝑢̃ ⁰)<200 GeV	1501.01325
	*Only a selection of th states or phenomena	e available m a is shown.	nass limits	s on ne	ew 1)-1	1	Mass scale [TeV]	1

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

Summary of CMS SUSY Results* in SMS framework

ICHEP 2014

Model	# Pars
mSUGRA	3
CMSSM	4
NUHM1	5
NUHM2	6
SU(5)	7
pMSSM	19
MSSM	124

There have been many studies of the CMSSM assessing its status after the 7 and 8 TeV runs of the LHC, including:

1. "The CMSSM and NUHM1 after LHC Run 1", O. Buchmueller *et al.*, Eur. Phys. J. **C74** (2014), 2922

 "Experimental status of supersymmetry after the LHC Run-1", C. Autermann, Prog. Part. Nucl. Phys. 90 (2016) 125

"Killing the cMSSM softly", P. Bechtle *et al.*, Eur. Phys. J. C76 (2016), 96

Best Fit to CMSSM

(a) 1σ and 2σ contour plot in in the $(M_0, M_{1/2})$ -plane for the Small Observable Set. (b) 1σ and 2σ contour plot in in the $(M_0, M_{1/2})$ -plane for the Medium Observable Set.

(c) 1 σ and 2 σ contour plot in the $(M_0, M_{1/2})$ -plane for the Large Observable Set

(d) 1 σ and 2 σ contour plot in the (A₀, tan β)-plane for Medium Observable Set.

"Killing the cMSSM softly", P. Bechtle et al., Eur. Phys. J. C76 (2016), 96

Best Fit to CMSSM

Fig. 6 Our predicted mass of the light Higgs boson, together with the 1 σ and 2 σ ranges. The LHC measurements used in the fit are shown as well. Note that the correlated theory uncertainty of $\Delta m_{h_{theo}} = 3$ GeV is not shown in the the plot. The relative smallness of the 68% CL region of the fitted mass of $\Delta m_{h_{fit}} = 1.1$ GeV is caused by constraints from other observables.

"Killing the cMSSM softly", P. Bechtle et al., Eur. Phys. J. C76 (2016), 96

"Although the standard CMSSM ... is still viable, there remain only restricted regions of the parameter space of the CMSSM ... in which a successful prediction for m_h can be reconciled with the measured cold dark matter density"*

Indeed, Bechtle et al. exclude the CMSSM at 90% CL.

[•] "Beyond the CMSSM without an Accelerator: Proton Decay and Direct Dark Matter Detection", J. Ellis *et al.*, Eur. Phys. J. **C76** (2016), 8

Model	# Pars
mSUGRA	3
CMSSM	4
NUHM1	5
NUHM2	6
SU(5)	7
pMSSM	19
MSSM	124

3 gaugino mass parameters M_1, M_2, M_3 1 ratio of Higgs vacuum expectation values $\tan \beta = v_2 / v_1$ 1 higgsino mass parameter μ 1 pseudoscalar Higgs boson mass m_A 10 sfermion mass parameters $m_{\tilde{F}}$ 3 trilinear couplings A_i, A_b, A_τ

ATLAS collaboration, "Summary of the ATLAS experiment's sensitivity to supersymmetry after LHC Run 1 — interpreted in the phenomenological MSSM", JHEP 1510 (2015) 134

CMS collaboration, "Phenomenological MSSM interpretation of CMS searches in pp collisions at sqrt(s) = 7 and 8 TeV", JHEP 1610 (2016) 129

pMSSM: Twelve Principal Processes

The pMSSM: Gluino and LSP

CMS and ATLAS reach similar conclusions regarding the gluino and lightest neutralino.

pMSSM: Squarks

SMS vs pMSSM

Here is an illustration, from ATLAS, of why some caution is needed in drawing conclusions from simplified models.

pMSSM: Summary

- Gluino masses < 500 GeV excluded.
- Neutralino and chargino masses < 300 GeV strongly disfavored.</p>
- A relatively light supersymmetric top is still viable.
- About half of the potentially accessible pMSSM parameter space excluded.
- ☐ Of the surviving points, about half have cross sections exceeding ~ 10fb and tend to yield events with missing E_T lower than typical missing E_T analysis cuts.

Beyond Low-Hanging Fruit

Outline

Introduction

- □ What is supersymmetry?
- □ What have we learned
- Summary & Conclusions

Summary and Conclusions

- The CMSSM has been excluded at 90% CL.
- In the pMMSM (a good MSSM proxy), about half of the parameter space, potentially accessible at the LHC, remains.
- Of the remaining model points, about half have cross sections exceeding 10fb.
- The gluino mass > 500 GeV, a light stop is still possible, but squarks and neutralinos with mass < 300 GeV are strongly disfavored.
- Conclusion: weak-scale supersymmetry remains viable!