
PHY 5246: Theoretical Dynamics, Fall 2015

Assignment # 5, Solutions

1 Graded Problems

Problem 1

(1.a)

Using the equation of the orbit or force law

d2

dθ2

(

1

r

)

+
1

r
= −mr2

l2
F (r) , (1)

with r(θ) = keαθ one finds
α2

r
+

1

r
= −mr2

l2
F (r) , (2)

from which

F (r) = −(1 + α2)l2

m

1

r3
. (3)

(1.b)

For a central force motion we have that

θ̇ =
l

mr2
=

l

mk2
e−2αθ , (4)

where l is the magnitude of the conserved angular momentum. We can easily integrate this
equation by separation of variables, i.e.

e2αθdθ =
l

mk2
dt −→ 1

2α
e2αθ + C =

l

mk2
t , (5)

where C a constant of integration. Isolating the exponential term and taking the logarithm of
both l.h.s and r.h.s. one gets

θ(t)− θ0 =
1

2α
ln

[

2αl

mk2
t+ C ′

]

, (6)

where C ′ = −2αC is determined by the initial conditions on θ0.
Substituting θ(t) into the expression of r(θ) one gets

r(t) = K

[

2αl

mk2
t+ C ′

]1/2

=

[

2αl

m
t + k2C ′

]1/2

, (7)

where K = keαθ0 .



(1.c)

The total energy of the orbit is

E =
1

2
m(ṙ2 + r2θ̇2) + V (r) , (8)

where, using Eqs. (6)-(7), we can calculate the kinetic energy as

T =
1

2
m(ṙ2 + r2θ̇2) =

(1 + α2)l2

2m

1

r2
, (9)

while the potential energy (modulus a constant of integration) is

V (r) = −
∫

F (r)dr = −
∫

[

−(1 + α2)l2

m

1

r3

]

= −(1 + α2)l2

2m

1

r2
, (10)

and E = T + V = 0.

Problem 2

(2.a)

The problem is easily discussed in terms of the effective potential

V ′(r) =
1

2

l2

mr2
+ V (r) =

1

2

l2

mr2
+ βrk . (11)

In order for a circular orbit to exist the effective potential has to have a minimum for some finite
value of r. The minimum condition is

∂V ′(r)

∂r
= 0 −→ − l2

mr3
+ βkrk−1 = 0 , (12)

which admits a real solution only if β and k are either both positive or both negative. In which
case the radius of the circular orbit is

r0 =

(

l2

mkβ

)
1

k+2

. (13)

(2.b)

Since about the equilibrium position r = r0 the system behaves as a linear harmonic oscillator
subject to a restoring force F (r) = −α(r−r0), with potential energy V ′(r) = V ′(r0)+

1
2
α(r−r0)

2,
we can find α by simply expanding V ′(r) about r = r0 and taking the coefficient of the quadratic
term in the expansion. The frequency of small oscillations will then be ωr = (α/m)1/2 (where the
index r indicates that the oscillation are in the radial direction). The expansion of the potential
is

V ′(r) = V ′(r0) +
1

2

∂2V ′(r)

∂r2

∣

∣

∣

∣

∣

r=r0

(r − r0)
2 +O((r − r0)

3) , (14)



such that

α =
∂2V ′(r)

∂r2

∣

∣

∣

∣

∣

r=r0

(15)

=
3l2

m

1

r40
+ βk(k − 1)rk−2

0

=

(

l2

mβk

)− 4

k+2





3l2

m
+ βk(k − 1)

(

l2

mβk

)k+2




= r−4
0

l2

m
(k + 2) ,

and the frequency of small oscillations ωr is

ωr =
(

α

m

)1/2

=
l

mr20

√
k + 2 . (16)

(2.c)

The ratio of the frequency of small (radial) oscillation, ωr, to the frequency ωθ = θ̇ of the (nearly)
circular motion is

ωr

ωθ
=

l
mr2

0

√
k + 2

l
mr2

0

=
√
k + 2 . (17)

The four given cases are:

k = −1 −→ ωr

ωθ

= 1 (18)

k = 2 −→ ωr

ωθ

= 2

k = 7 −→ ωr

ωθ
= 3

k = −7

4
−→ ωr

ωθ
=

1

2

which correspond to r making 1,2,3, or respectively 1
2
oscillation(s) for each complete revolution

in θ.

Problem 3 (Goldstein 3.11)

The reduced system also moves in a circular orbit with some radius r = a (and therefore r̈ = 0).
The corresponding equation of motion is

r̈ = 0 =
l2

ma3
− k

a2
.

We solve this, using l = mr2θ̇:
l2

ma3
=

k

a2
⇒ θ̇2 =

k

ma3
.



θ̇ = ω =

√

k

ma3
=

2π

τ
⇒ τ =

2π

ω
= 2π

√

ma3

k
. (19)

Here we can note that ω is constant and τ must be the period of both the reduced system and
the original circular motion.

When the two masses are stopped and then released from rest, they have zero angular mo-
mentum l = 0, so they just satisfy a radial motion equation of the form

−k

a
=

1

2
mṙ2 − k

r
,

which is easily found using conservation of energy. Therefore

ṙ2 =
2k

m

(

1

r
− 1

a

)

ṙ = −
√

2k

m

(

1

r
− 1

a

)1/2

= −
√

2k

m

(

a− r

ra

)1/2

.

Integrating the previous relation between t = 0 and t, we get,

−
∫ 0

a

dr
√

a−r
ra

=

√

2k

m
t, (20)

where t is the time it takes for the two masses to move from r = a to r = 0. Performing this
integration:

∫ 0

a

dr
√

a−r
ar

=
√
a
∫ 0

a
dr

√

r

a− r
= 2

√
a
∫ 0

√
a
dx

x2

√
a− x2

= 2
√
a

[

−x

2

√
a− x2 +

a

2
sin−1

(

x√
a

)]0

√
a

= −a
π

2

√
a.

In the first line we have changed integration variables with r = x2, and to get to the second line
we have used a standard integration table. Thus, from (20) we have

a
π

2

√
a =

√

2k

m
t ⇒ t =

√

m

2k
a
√
a
π

2

t2 =
m

2k
a3

π2

4
=

τ 2

32
⇒ t =

τ

4
√
2
.

To get this final result we have used the period we found in (19).

2 Non-graded Problems

Problem 4 (Goldstein 3.19)

(Note that the Yukawa potential is a kind of screened Coulomb potential, and can be used to
describe some common particle interactions - pion exchange between nucleons, for instance.)

The force corresponding to the Yukawa potential (for k, a > 0) is

F (r) = − k

r2
e−r/a.



(4.a)

The Lagrangian corresponding to a particle in the Yukawa potential is

L =
1

2
m(ṙ2r2θ̇2)− V (r) =

1

2
m(ṙ2 + r2θ̇2) +

k

r
e−r/a.

The equation of motion for θ simply gives us conservation of angular momentum:

mr2θ̇ = constant := l.

The equation of motion for r is

mr̈ −mrθ̇2 +
k

r2
e−r/a + a

k

r
e−r/a = 0

mr̈ − l2

mr3
+

(

k

r2
+

ak

r

)

e−r/a = 0.

Using this we can write the energy as:

E =
1

2
m(ṙ2 + r2θ̇2) + V (r)

=
1

2
mṙ2 +

1

2

l2

mr2
− k

r
e−r/a =

1

2
mṙ2 + V ′(r),

where V ′(r) is the effective potential (see figure). Asymptotically, this potential has the feature
that for both large (r → ∞) and small (r → 0) it is dominated by the 1/r2 term. In the middle
regions it will depend on the value of l.

(4.b)

The circular orbit condition is verified (for those values of l when V ′(r) has a minimum) if:

∂V ′(r)

∂r
= 0 ⇒ − l2

mr2
+

(

k

r2
+

k

ra

)

e−r/a = 0

l2

mk
= r0e

−r0/a
(

a+
r0
a

)

. (21)

In this case we explain what happens when we examine small deviations from r = r0. Take

r(θ) = r0 [1 + δ(θ)]

and insert this into the equation for the orbit

d2

dθ2

(

1

r

)

+
1

r
= −mr2

l2
F (r) =

mk

l2
e−r/a.

Using the standard change of variables

u :=
1

r
=

1

r0
(1− δ),
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Figure 1: A graph of the effective Yukawa potential for two different vales of angular momentum.
Here we have set k/a = 1 and K =

√
2mk.

we find that

d2u

dθ2
+ u =

mk

l2
e−1/au

⇓
d2u

dθ2
+ (1− δ) =

mk

l2
r0e

− r0
a
(1+δ)

(

a− r0
a
δ
)

⇓
d2δ

dθ2
+

(

1− mk

l2a
r20e

−r0/a

)

δ = 1− mk

l2
r0e

−r0/a.

This is the equation for a simple harmonic oscillator (with a constant shift) and frequency

ω2 = 1− mk

l2
r20e

−r0/a = 1− r0
a

1

1 + r0
a

=
1

1 + r0
a

,

where we have used the definition of r0 from (21). Now choose δ to be at maximum when θ = 0,
then the next maximum will occur when

ωθ = 2π ⇒ θ =
2π

ω
= 2π

(

1 +
r0
2a

)

+ o

(

[

r0
a

]2
)

.

Therefore the apsides advance by

∆θ =
πr0
a

each revolution.


