PHY 5246: Theoretical Dynamics, Fall 2015

Assignment # 5, Solutions

1 Graded Problems

Problem 1
(1.a)
Using the equation of the orbit or force law
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For a central force motion we have that
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where [ is the magnitude of the conserved angular momentum. We can easily integrate this
equation by separation of variables, i.e.
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where C' a constant of integration. Isolating the exponential term and taking the logarithm of

both L.h.s and r.h.s. one gets
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Substituting #(t) into the expression of r(#) one gets
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where K = ke,



(1.c)

The total energy of the orbit is
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where, using Egs. (6)-(7), we can calculate the kinetic energy as
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while the potential energy (modulus a constant of integration) is
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and E=T+V =0.

Problem 2
(2.a)

The problem is easily discussed in terms of the effective potential
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In order for a circular orbit to exist the effective potential has to have a minimum for some finite
value of r. The minimum condition is
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which admits a real solution only if 8 and k are either both positive or both negative. In which
case the radius of the circular orbit is
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(2.b)

Since about the equilibrium position r = ry the system behaves as a linear harmonic oscillator
subject to a restoring force F/(r) = —a(r —ry), with potential energy V'(r) = V'(ro) + (1 —19)?,
we can find « by simply expanding V’(r) about r = r¢ and taking the coefficient of the quadratic
term in the expansion. The frequency of small oscillations will then be w, = (a/m)*/? (where the
index r indicates that the oscillation are in the radial direction). The expansion of the potential
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such that
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and the frequency of small oscillations w;, is
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The ratio of the frequency of small (radial) oscillation, w,, to the frequency wy = 6 of the (nearly)

circular motion is l
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The four given cases are:
h=-1 — -1 (18)
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which correspond to r making 1,2,3, or respectively % oscillation(s) for each complete revolution
in 6.

Problem 3 (Goldstein 3.11)

The reduced system also moves in a circular orbit with some radius r = a (and therefore 7 = 0).
The corresponding equation of motion is
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We solve this, using | = mr20:
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Here we can note that w is constant and 7 must be the period of both the reduced system and
the original circular motion.
When the two masses are stopped and then released from rest, they have zero angular mo-
mentum [ = 0, so they just satisfy a radial motion equation of the form
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which is easily found using conservation of energy. Therefore
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Integrating the previous relation between ¢t = 0 and ¢, we get,
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where ¢ is the time it takes for the two masses to move from r = a to r = 0. Performing this

integration:
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In the first line we have changed integration variables with r = 22, and to get to the second line
we have used a standard integration table. Thus, from (20) we have
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To get this final result we have used the period we found in (19).

2 Non-graded Problems

Problem 4 (Goldstein 3.19)

(Note that the Yukawa potential is a kind of screened Coulomb potential, and can be used to
describe some common particle interactions - pion exchange between nucleons, for instance.)
The force corresponding to the Yukawa potential (for k,a > 0) is
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(4.a)
The Lagrangian corresponding to a particle in the Yukawa potential is
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The equation of motion for 6 simply gives us conservation of angular momentum:
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The equation of motion for r is
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Using this we can write the energy as:
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where V'(r) is the effective potential (see figure). Asymptotically, this potential has the feature
that for both large (r — o) and small (r — 0) it is dominated by the 1/7? term. In the middle
regions it will depend on the value of (.

(4.b)

The circular orbit condition is verified (for those values of [ when V’(r) has a minimum) if:
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In this case we explain what happens when we examine small deviations from r = ry. Take
r(0) =ro[1+d(0)]
and insert this into the equation for the orbit
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Using the standard change of variables
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Figure 1: A graph of the effective Yukawa potential for two different vales of angular momentum.
Here we have set k/a =1 and K = v/2mk.

we find that
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This is the equation for a simple harmonic oscillator (with a constant shift) and frequency
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where we have used the definition of 7 from (21). Now choose ¢ to be at maximum when 6 = 0,
then the next maximum will occur when
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Therefore the apsides advance by
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each revolution.



