Higgs Boson Physics from indirect constraints to direct searches

Laura Reina

Aspen Winter Coneference, February 2011

- Unveiling the origin of Electroweak Symmetry Breaking (EWSB): top priority of both the Tevatron and the LHC,
 - \hookrightarrow Tevatron: can set exclusion limits;
 - \hookrightarrow LHC: can discover related particles and their dynamics.
- Spectrum of ideas to explain EWSB: based on weakly or strongly coupled dynamics embedded into some more fundamental theory at a scale Λ (\simeq TeV):
 - \rightarrow Elementary Higgs: SM, 2HDM, SUSY (MSSM, NMSSM, . . .), . . .
 - \rightarrow Composite Higgs: technicolor, little Higgs models, \ldots
 - $\rightarrow\,$ Extra Dimensions: flat,warped, \ldots
 - \rightarrow Higgsless models
 - $\rightarrow \ldots$
- SM Higgs boson, our learning ground:
 - $\mathcal{L}_{Higgs}^{SM} = (D^{\mu}\phi)^{\dagger} D_{\mu}\phi \mu^{2}\phi^{\dagger}\phi \lambda(\phi^{\dagger}\phi)^{2} \ (\mu^{2} < 0):$
 - scalar particle, neutral, CP even, $m_H^2 = -2\mu^2 = 2\lambda v^2;$
 - minimally coupled to gauge bosons $\longrightarrow M_W = g \frac{v}{2}, M_Z = \sqrt{g^2 + g'^2} \frac{v}{2};$
 - coupled to fermions via Yukawa interactions $\longrightarrow m_f = y_f \frac{v}{2}$;
 - \hookrightarrow mass constrained by EW precision fits.

SM Higgs-boson mass range: constrained by EW precision fits Increasing precision will continue to provide an invaluable tool to test the consistency of the SM and its extensions.

 $m_W = 80.399 \pm 0.023 \text{ GeV}$ $m_t = 173.3 \pm 1.1 \text{ GeV}$ ∜ $M_H = 89^{+35}_{-26} \text{ GeV}$ $M_H < 158 \,(185) \,\,{\rm GeV}$ plus exclusion limits (95% c.l.): $M_{H} > 114.4 \text{ GeV} (\text{LEP})$ $M_H \neq 158 - 175 \text{ GeV}$ (Tevatron)

focus is now on exclusion limits and discovery!

- New Precision Program: for signal and background processes in Higgs-boson production,
 - \triangleright theoretical predictions: stability and control of the systematic errors;
 - b theoretical predictions: test validity of existing results in different regimes and under different exclusive cuts;
 - enforce standards in multi-process studies/analyses (e.g.: combining different production channels, comparing signal and background, etc.);
 - \triangleright make experimental selection process more transparent;

▷ ...

- Explore new techniques and new ideas to fully exploit the discovery potential,
 - ▷ boosted regimes (used for WH/ZH, and $t\bar{t}H$);
 - \triangleright jet substructure (used for WH/ZH, and $t\bar{t}H$);
 - (Butterworth, Davison, Rubin, Salam, arXiv:0802.2470),
 - (Piacquadio, CERN-THESIS-2010-027, 2010),
 - (Plehn, Salam, Spannowski,arXiv:0802.2470)
 - \triangleright new variables (lower theoretical uncertainty, ...).

Tevatron: great potential for a light SM-like Higgs boson

 \hookrightarrow Exclusion region very important for LHC search strategies.

LHC: entire SM Higgs-boson mass range accessible

Many channels have been studied: Below 130-140 GeV: $gg \rightarrow H, H \rightarrow \gamma\gamma, WW, ZZ$ $qq \rightarrow qqH, H \rightarrow \gamma\gamma, WW, ZZ, \tau\tau$ $q\bar{q}, gg \rightarrow t\bar{t}H, H \rightarrow \gamma\gamma, b\bar{b}, \tau\tau$ $q\bar{q}' \rightarrow WH, H \rightarrow \gamma\gamma, b\bar{b}$

Above 130-140 GeV: $gg \rightarrow H, H \rightarrow WW, ZZ$ $qq \rightarrow qqH, H \rightarrow \gamma\gamma, WW, ZZ$ $q\bar{q}, gg \rightarrow t\bar{t}H, H \rightarrow \gamma\gamma, WW$ $q\bar{q}' \rightarrow WH, H \rightarrow WW$ With $\sqrt{s} = 7$ TeV and a few fb⁻¹ ...

Combining only $H \to W^+W^-$, $H \to ZZ$, $H \to \gamma\gamma$, ATLAS and CMS indicate that,

- if no signal, the SM Higgs can be excluded in the range 140 200 GeV;
- a 5σ significance for a SM Higgs in the 160 170 GeV mass range;
- in the low mass region (\leftrightarrow new strategies, new ideas).

LHC: high luminosity projections (old)

- \triangleright Low mass region still difficult at low luminosity.
- \triangleright Channels like $WH, H \rightarrow b\bar{b}$ absent even at 30 fb⁻¹.
- \triangleright Updated studies would probably show very different features.

Crucial to have access to the best theoretical predictions for Higgs-boson cross sections and branching ratios.

\Downarrow

The LHC Higgs Cross Sections Working Group (https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections)

Two stages:

- inclusive observables (studies done in 2010) (arXiv:1101.0593 \rightarrow Yellow Book);
- exclusive observables (studies started in 2011).

Ten subgroups:

- 4 SM production modes + 2 MSSM subgroups;
- branching ratios;
- PDF;
- NLO Monte Carlo;
- Higgs pseudo-observables.

Goals:

- implementing a coherent Higgs precision program;
- provide working tools to the experiments in a timely fashion.

Inclusive SM Higgs Production: theoretical predictions and their uncertainty

- all orders of calculated higher orders corrections included (tested with all existing calculations);
- common recipe for renormalization+factorization scale dependence;
- PDF and α_s errors following PDF4LHC prescription;
- all other parametric errors included;
- theory errors combined according to common recipe.

Higgs process	$\sigma_{NLO,NNLO,NNLL,EW}$
gg ightarrow H	 S.Dawson, NPB 359 (1991), A.Djouadi, M.Spira, P.Zerwas, PLB 264 (1991) C.J.Glosser et al., JHEP (2002); V.Ravindran et al., NPB 634 (2002) D. de Florian et al., PRL 82 (1999) R.Harlander, W.Kilgore, PRL 88 (2002) (NNLO) C.Anastasiou, K.Melnikov, NPB 646 (2002) (NNLO) V.Ravindran et al., NPB 665 (2003) (NNLO) S.Catani et al. JHEP 0307 (2003) (NNLL) G.Bozzi et al., PLB 564 (2003), NPB 737 (2006) (NNLL) C.Anastasiou, R.Boughezal, F.Petriello, JHEP (2008) (QCD+EW)
$q\bar{q} ightarrow (W,Z)H$	T.Han, S.Willenbrock, PLB 273 (1991) M.L.Ciccolini, S.Dittmaier, and M.Krämer (2003) (EW) O.Brien, A.Djouadi, R.Harlander, PLB 579 (2004) (NNLO)
$q\bar{q} \rightarrow q\bar{q}H$	T.Han, G.Valencia, S.Willenbrock, PRL 69 (1992) T.Figy, C.Oleari, D.Zeppenfeld, PRD 68 (2003) M.L.Ciccolini, A.Denner, S.Dittmaier (2008) (QCD+EW) P.Bolzoni, F.Maltoni, S.O.Moch, and M.Zaro (2010) (NNLO)
$q\bar{q}, gg \to t\bar{t}H$	W.Beenakker <i>et al.</i> , PRL 87 (2001), NPB 653 (2003) S.Dawson <i>et al.</i> , PRL 87 (2001), PRD 65 (2002), PRD 67,68 (2003)

Towards exclusive studies: including decays, cuts, jet vetos, backgrounds, ...

- Obtain distibutions from NLO/NNLO/NNLL calculations.
- Study the impact of higher order corrections in the presence of cuts, jet vetos, etc.
- If cuts imposed on decay products, need to include decays and estimate higher order corrections to the new process
 - high multiplicity of final state makes calculation more involved (very few NLO calculations exist)
 - narrow width approximations often excellent approximation (top, light Higgs) (Melnikov, Schulze, arXiv:1006.0910, arXiv:1102.1967)
- Interface with NLO Monte Carlo would be best:
 - MC@NLO: $gg \to H, W/ZH$;
 - POWHEG: $gg \to H, q\bar{q}'H$.
- Backgrounds need to be calculated with comparable accuracy.

<u>Ex. 1</u>: Exclusive NNLO results: $gg \to H, H \to \gamma\gamma, WW, ZZ$

Extension of (IR safe) subtraction method to NNLO

- \longrightarrow HNNLO[Catani, Grazzini (05)]
- \longrightarrow FEHiP [Anastasiou, Melnikov, Petriello (05)]

Essential tools to reliably implement experimental cuts/vetos.

[Anastasiou, Melnikov, Petriello (05)]

jet veto (to enhance $H \to WW$ signal with respect to $t\bar{t}$ background) seems to improve perturbative stability of y-distribution \longrightarrow jet veto is removing non-NNLO contributions. Full fledged $(gg \rightarrow)H \rightarrow W^+W^- \rightarrow l^+\nu l^-\bar{\nu}$

The magnitude of higher order corrections varies significantly with the signal selection cuts.

[Anastasiou, Dissertori, Stöckli (07)]

$gg \rightarrow H$ implemented in MC@NLO and POWHEG

[Alioli, Nason, Oleari, Re, (08)]

- \rightarrow general good agreement with PYTHIA;
- \rightarrow comparison MC@NLO vs POWHEG understood;
- $\rightarrow\,$ comparison with resummed NLL and NNLL results under control.

Recently completed NLO calculations: most are relevant backgrounds to Higgs-boson physics!

Process $(V \in \{Z, W, \gamma\})$	Calculated by
$pp \rightarrow V+2 \text{ jets}(b)$	Campbell,Ellis,Maltoni,Willenbrock (06)
$pp \to V b \bar{b}$	Febres Cordero, Reina, Wackeroth (07-08)
$pp ightarrow W b ar{b}$	Campbell,Ellis (10)
$pp \rightarrow VV + \text{jet}$	Dittmaier, Kallweit, Uwer $(WW+jet)$ (07)
	Campbell, Ellis, Zanderighi (WW +jet+decay) (07)
	Binoth,Karg,Kauer,Sanguinetti (09)
$pp \rightarrow VV + 2$ jets	Bozzi, Jäger, Oleari, Zeppenfeld (via WBF) (06-07)
$pp \rightarrow VVV$	Lazopoulos, Melnikov, Petriello (ZZZ) (07)
	Binoth, Ossola, Papadopoulos, Pittau (WWZ, WZZ, WWW) (08)
	Hankele, Zeppenfeld ($WWZ \rightarrow 6$ leptons, full spin correlation) (07)
$pp \rightarrow H+2$ jets	Campbell, Ellis, Zanderighi (NLO QCD to gg channel) (06)
arXiv:1102.1967	Ciccolini, Denner, Dittmaier (NLO QCD+EW to WBF channel) (07)
$pp \rightarrow H+3$ jets	Figy, Hankele, Zeppenfeld (large N_c) (07)
$pp \rightarrow t\bar{t} + {\rm jet}$	Dittmaier, Uwer, Weinzierl (07), Ellis, Giele, Kunszt (08)
$pp \to t\bar{t}Z$	Lazopoulos,Melnikov,Petriello (08)
gg ightarrow WW	Binoth,Ciccolini,Kauer,Kramer (06)
$gg \rightarrow HH, HHH$	Binoth,Karg,Kauer,Rückl (06)
$pp ightarrow t ar{t} b ar{b}$	Bredenstein et al., Bevilacqua et al. (09)
$pp \rightarrow V + 3 \text{jets}$	Berger et al., Ellis et al. (09)
$pp \rightarrow W + 4 \text{jets}$	Berger et al. (10)

<u>Ex.</u> 2: W + 1 b-jet: crucial background for WH production

[Campbell, Ellis, Febres Cordero, Maltoni, L.R., Wackeroth, Willenbrock (09)]

Consistently combine 4FNS $(m_b \neq 0)$ and 5FNS $(m_b = 0)$ at NLO in QCD:

1.
$$q\bar{q}' \to Wb\bar{b}$$
 at tree level and one loop $(m_b \neq 0)$
2. $q\bar{q}' \to Wb\bar{b}g$ at tree level $(m_b \neq 0)$
3. $bq \to Wbq'$ at tree level and one loop $(m_b = 0)$
4. $bq \to Wbq'g$ and $bg \to Wbq'\bar{q}$ at tree level $(m_b = 0)$
5. $gq \to Wb\bar{b}q'$ at tree level $(m_b \neq 0) \to$ avoiding double counting:

 \rightarrow indeed: a fully consistent NLO 5FNS calculation (S-ACOT scheme).

Comparison with CDF measurement: a puzzle?

CDF Note 9321 (arXiv:0909.1505):

 $\sigma_{b-jet}(W + b jets) \cdot Br(W \rightarrow l\nu) = 2.74 \pm 0.27(stat) \pm 0.42(syst) pb$

[Neu, Thomson, Heinrich]

From our W + 1b calculation:

[Campbell, Febres Cordero, L.R.]

$$\sigma_{\rm b-jet}(W + b \, \text{jets}) \cdot Br(W \rightarrow l\nu) = 1.22 \pm 0.14 \text{ pb}$$

(For comparison: ALPGEN gives 0.78 pb, PYTHIA 1.10 pb)

Outlook:

- need to compare more observables;
- need D0 measurement;
- need to compare with LHC measurements (coming soon);
- match $Wb\bar{b}$ with NLO Monte Carlo (soon to be released in POWHEG).

Conclusions and Outlook

- We are living through a new era in Higgs boson physics: looking for direct evidence.
- SM Higgs boson precision physics has given a first coherent set of predictions for inclusive observables: Higgs boson production cross sections and branching ratios.
- Short term: study exclusive observables, including decays, background processes, and experimental cuts.
- Long term: the LHC can carry through a precision program that also include measurements of Higgs boson properties, to identify it.
 - high luminosity required;
 - strategies depend on itermediate discoveries;
 - more sophisticated techniques available by then.