W/Z production with *b*-jets: a challenging background

Laura Reina

Università di Milano-Bicocca, Luglio 2010

• Motivations: main background to

- $\rightarrow WH/ZH$ associated production;
- \rightarrow single-top production;
- $\rightarrow H/A + b\bar{b}$ and other signals of new physics;
- $\rightarrow t\bar{t}$ production;
- $\rightarrow\,$ several non-standard model signatures.
- New studies:
 - $\rightarrow Wb\bar{b}/Zb\bar{b}$ at NLO, b massive (F. Febres Cordero, L. R., D. Wackeroth)
 - $\rightarrow~W+1\,b\text{-jet},\,4\text{FNS}$ and 5FNS merged at NLO (J. Campbell, K. Ellis,

F. Febres Cordero, F. Maltoni, L. R., D. Wackeroth, S. Willenbrock)

• Outlook

Associated production of SM Higgs with weak vector bosons

- \rightarrow NNLO QCD corrections have been calculated for the signal [O.Brien, A.Djouadi and R.Harlander, 2004]
- $\rightarrow O(\alpha)$ EW corrections have been calculated for the signal [M.L.Ciccolini, S.Dittmaier and M.Kramer, 2003]
- \rightarrow Results for WH associated production, August 2008

SM Single-Top production

- → NLO QCD corrections have been thoroughly studied [T.Stelzer, Z.Sullivan and S.Willenbrock, 1998; B.W.Harris, E.Laenen, L.Phaf, Z.Sullivan and S.Weinzierl, 2002; ...]
 - → NLO EW corrections have been calculated for the (SM and MSSM) signal [M.Beccaria, G.Macorini,

F.M.Renard and C.Verzegnassi, 2006]

$Wb\bar{b}/Zb\bar{b}$ production at NLO, some history ...

- $V \longrightarrow 4$ partons (1-loop massless amplitudes) (Bern, Dixon, Kosower (97))
- $p\bar{p}, pp \to Vb\bar{b}$ (at NLO, 4FNS, $m_b = 0$) (Campbell, Ellis (99))
- $p\bar{p}, pp \rightarrow Vb + j$ (at NLO, 5FNS) (Campbell, Ellis, Maltoni, Willenbrock (05,07))
- $p\bar{p}, pp \to Wb\bar{b}$ (at NLO, 4FNS, $m_b \neq 0$) (Febres Cordero, L.R., Wackeroth (06,09))
- $p\bar{p}, pp \to Zb\bar{b}$ (at NLO, 4FNS, $m_b \neq 0$) (Febres Cordero, L.R., Wackeroth (08,09))
- $p\bar{p}, pp \to W + 1 b$ -jet (at NLO, 5FNS+4FNS with $m_b \neq 0$) (Campbell, Ellis, Febres Cordero, Maltoni, L.R., Wackeroth, Willenbrock (08))

$Wb\bar{b}/Zb\bar{b}$ production with full m_b effects

 $gg \to Zb\overline{b}$

Including $O(\alpha_s)$ corrections

$$\hat{\sigma}_{ij}^{\text{NLO}}(x_1, x_2, \mu) = \alpha_s^2(\mu) \left\{ f_{ij}^{\text{LO}}(x_1, x_2) + \frac{\alpha_s(\mu)}{4\pi} f_{ij}^{\text{NLO}}(x_1, x_2, \mu) \right\}$$

$$\equiv \hat{\sigma}_{ij}^{\text{LO}}(x_1, x_2, \mu) + \delta \hat{\sigma}_{ij}^{\text{NLO}}(x_1, x_2, \mu) ,$$

$$\delta \hat{\sigma}_{ij}^{\text{NLO}} = \hat{\sigma}_{ij}^{\text{virt}} + \hat{\sigma}_{ij}^{\text{real}} .$$

• Virtual Corrections: consist of one-loop diagrams interfered with corresponding LO amplitude

$$- Wb\overline{b}$$
: one subprocess, $q\overline{q}' \to Wb\overline{b}$

- $Zb\overline{b}$: two subprocesses, $q\overline{q} \to Zb\overline{b}$ and $gg \to Zb\overline{b}$
- Real Corrections: consist of tree level diagrams with one extra parton
 - $-Wb\overline{b} + k$: two subprocess, $q\overline{q}' \to Wbb + g$ and $q(\overline{q})g \to Wb\overline{b} + q'(\overline{q}')$
 - $Zb\overline{b} + k$: three subprocesses, $q\overline{q} \to Zb\overline{b} + g$, $gg \to Zb\overline{b} + g$ and $q(\overline{q})g \to Zb\overline{b} + q(\overline{q})$

Virtual corrections at a glance: the $gg \rightarrow Zb\bar{b}$ virtual diagrams.

 \longrightarrow Counting: 8 diagrams at LO - ${\sim}100$ at NLO - 12 pentagons

Virtual corrections: calculating $\hat{\sigma}_{ij}^{\text{virt}}$

$$\hat{\sigma}_{ij}^{\text{virt}} = \int d\left(PS_3\right) \overline{\sum} |\mathcal{A}_{\text{virt}}(ij \to W/Z \ b\bar{b})|^2$$

where:

$$\overline{\sum} |\mathcal{A}_{\text{virt}}(ij \to W/Z \ b\bar{b})|^2 = \sum_D \overline{\sum} \left(\mathcal{A}_0 \mathcal{A}_D^{\dagger} + \mathcal{A}_0^{\dagger} \mathcal{A}_D \right) = \sum_D \overline{\sum} 2\mathcal{R}e \left(\mathcal{A}_0 \mathcal{A}_D^{\dagger} \right)$$

- \longrightarrow Use dimensional regularization to regularize UV and IR divergencies.
- \longrightarrow UV divergencies are canceled by a suitable set of counterterms.
- \rightarrow Calculate each diagram as linear combination of Dirac structures with coefficients that depend on both tensor and scalar integrals.
- \longrightarrow Tensor integrals reduced analytically to scalar integrals and organized to avoid spurious divergences due to appearance of inverse power of Gram Determinant.
- \longrightarrow IR divergencies will cancel with $\hat{\sigma}_{ij}^{\text{real}}$.

Checking boxes and pentagons using unitarity methods. The one-loop amplitude can be written as

$$\mathcal{A}_{\text{virt}} = \sum_{i} d_{i} I_{4}^{i} + \sum_{i} c_{i} I_{3}^{i} + \sum_{i} b_{i} I_{2}^{i} + \sum_{i} a_{i} I_{1}^{i} + R$$

 \longrightarrow tadpoles, bubbles and vertices are easy in FD's language;

 \rightarrow boxes and pentagons are the real hurdle (tensor integrals up to rank 4)

\Downarrow

 I_4^i scalar 4-point functions originate from box and pentagon diagrams. Calculating d_i with unitarity methods is a powerful check!

easy using quadrupole cuts!

Britto,Cachazo,Feng Bern,Dixon,Kosower Real corrections: calculating $\hat{\sigma}_{ij}^{\text{real}}$

$$\hat{\sigma}_{ij}^{\text{real}} = \int d\left(PS_4\right) \overline{\sum} |\mathcal{A}_{\text{real}}(ij \to W/Z \ b\bar{b} + k)|^2$$

- \rightarrow IR divergencies associated with the integration over the PS of the extra parton, can be extracted using the so called Phase Space Slicing (PSS) method with *two cutoffs*.
- \rightarrow PSS with two cutoffs uses two unphysical parameters, δ_s and δ_c to isolate soft and collinear divergent regions, where IR singularities are extracted analytically.
- \longrightarrow Same soft/collinear structure as $Ht\bar{t}/Hb\bar{b}$, tested against one-cutoff PSS and dipole subtraction method.
- \longrightarrow Physical quantities are independent of δ_s and δ_c , for small enough values of these parameters.

Check independence of the total cross section of δ_s and δ_c cuts

 δ_s -dep. for the $Zb\bar{b}$ total cross section

 δ_c -dep. for the $Wb\bar{b}$ total cross section

- \longrightarrow Cross section independent of unphysical cutoffs δ_s and δ_c
- \longrightarrow Results obtained fixing $\delta_s = 10^{-3}$ and $\delta_c = 10^{-5}$

W/Z + 2 b-jets

Febres Cordero, L.R., Wackeroth (06-09)

- We use the k_T jet algorithm with R = 0.7 and study two cases:
 - → Inclusive Cross Section: events with two $(b + \overline{b})$ or three $(b + \overline{b} + j)$ jets resolved contribute to the cross section.
 - \rightarrow Exclusive Cross Section: only events with two $(b + \overline{b})$ jets resolved contribute to the cross section.

Same convention used by MCFM (used to obtain the results for $m_b = 0$).

- *b*-jet kinematical cuts:
 - → Transverse momentum of the *b*-jets: $p_t > p_{t, min}$ (15-25 GeV) for both *b* and \overline{b} jets.

 \rightarrow Pseudorapidity: $|\eta| < \eta_{max}$ (2-2.5) for both b and \overline{b} jets.

• PDF: for LO results we use 1-loop evolution of α_s and CTEQ6L1, while for NLO results 2-loop evolution of α_s and CTEQ6M.

Tevatron: summary of LO and NLO total cross sections massive and massless calculation, setting $\mu_r = \mu_f = M_V + 2m_b \ (V = W, Z)$.

Cross Section, $Wb\bar{b}$	$m_b \neq 0 \; (\text{pb}) \; [\text{ratio}]$	$m_b = 0 \text{ (pb) [ratio]}$
$\sigma^{ m LO}$	2.20[-]	2.38[-]
$\sigma^{\rm NLO}$ inclusive	3.20[1.45]	3.45[1.45]
$\sigma^{\rm NLO}$ exclusive	2.64[1.2]	2.84[1.2]

Cross Section, $Zb\bar{b}$	$m_b \neq 0 \; (\text{pb}) \; [\text{ratio}]$	$m_b = 0 \text{ (pb) [ratio]}$
$\sigma^{ m LO}$	2.21[-]	2.37[-]
$\sigma^{\rm NLO}$ inclusive	3.34[1.51]	3.64[1.54]
$\sigma^{ m NLO}$ exclusive	2.75[1.24]	3.01[1.27]

Tevatron: scale dependence and theoretical uncertainty at NLO

 \longrightarrow Bands obtained by varying both μ_R and μ_F between $\mu_0/2$ and $4\mu_0$ (with $\mu_0 = m_b + M_V/2$ (V = W, Z)).

- LO uncertainty $\sim 40\%$.
- Inclusive NLO uncertainty $\sim 20\%$.
- Exclusive NLO uncertainty $\sim 10\%$.

$Wb\bar{b}$, scale dependence: LO vs NLO and massless vs massive

(PRD 78 (2008) 074014)

$Zb\overline{b}$, scale dependence: LO vs NLO and massless vs massive

(PRD 78 (2008) 074014)

Zbb: $m_{b\bar{b}}$ distributions, massive vs massless

(PRD 78 (2008) 074014)

$Wb\bar{b}/Zb\bar{b}, m_{b\bar{b}}$ distributions: testing rescaling LO \rightarrow NLO

Clear effect in the low $m_{b\bar{b}}$ invariant mass region.

LHC: scale dependence and theoretical uncertainty at NLO

(PRD 80:034015, 2009)

- \longrightarrow NLO corrections very large, particularly for inclusive production;
- \rightarrow large NLO scale-dependence (LO: 30%, NLO_{inc}: 50%, NLO_{exc}: 20%), induced by the opening of the $qg(\bar{q}g) \rightarrow Wb\bar{b} + q'(\bar{q}')$ channel;
- \longrightarrow theoretical uncertainty not only given by scale-dependence!

 \longrightarrow NLO corrections still large, particularly for inclusive production;

→ more moderate NLO scale-dependence (LO: 50%, NLO_{inc}: 30%, NLO_{exc}: 5%): $qg(\bar{q}g) \rightarrow Zb\bar{b} + q(\bar{q})$ channel not as dominant.

	$W^+ b \overline{b}$			
	$m_b \neq 0$	$m_{b} = 0$	$m_b \neq 0$	$m_{b} = 0$
	$p_T^b > 1$	$15 { m GeV}$	$p_T^b > 2$	$25 { m GeV}$
	$\sqrt{s} = 10 \mathrm{TeV}$			
$\sigma_{LO}~({\rm pb})$	$14.4 {+2.6 \\ -2.1}$	$15.5^{+2.7}_{-2.2}$	$6.49^{ig+1.3}_{-1.0}$	$6.67^{ig+1.3}_{ig-1.1}$
$\sigma_{NLO,inc} \ ({\rm pb})$	$33.6^{+7.8}_{-5.6}$	$36.4^{ig+8.1}_{ig-6.2}$	$14.6^{+3.6}_{-2.5}$	$15.1^{ightarrow 3.6}_{ightarrow 2.7}$
$\sigma_{NLO,exc}~({\rm pb})$	$18.6^{+1.7}_{-1.6}$	$20.3^{+1.7}_{-1.8}$	$8.37 \substack{+0.84 \\ -0.77}$	$8.67 \substack{+0.85 \\ -0.87}$
	$\sqrt{s} = 14 \mathrm{TeV}$			
$\sigma_{LO}~({\rm pb})$	$19.8^{+3.1}_{-2.5}$	$21.3^{+3.2}_{-2.7}$	$9.02^{\pm 1.6}_{-1.3}$	$9.26^{+1.6}_{-1.3}$
$\sigma_{NLO,inc}$ (pb)	$51.9^{+12}_{-8.7}$	$56.3^{ig+13}_{ig-9.6}$	$23.4 {+6.0 \atop -4.2}$	$24.3^{ig+5.9}_{-4.5}$
$\sigma_{NLO,exc}~({\rm pb})$	$27.8^{+3.1}_{-2.5}$	$30.4^{+3.5}_{-2.8}$	$12.9^{+1.6}_{-1.3}$	$13.4^{+1.6}_{-1.5}$

	$Z b \overline{b}$			
	$p_T^b > 1$	$15 { m GeV}$	$p_T^b > 2$	$25 { m GeV}$
	$m_b \neq 0$	$m_{b} = 0$	$m_b \neq 0$	$m_{b} = 0$
	$\sqrt{s} = 10 \mathrm{TeV}$			
$\sigma_{LO}~({\rm pb})$	55.1^{+16}_{-12}	57.6^{+18}_{-13}	$24.6^{+7.6}_{-5.4}$	$25.1^{+8.4}_{-5.9}$
$\sigma_{NLO,inc} ~({\rm pb})$	82.5^{+12}_{-11}	84.5^{+14}_{-12}	$36.0^{+3.9}_{-4.6}$	$36.1^{+6.4}_{-5.2}$
$\sigma_{NLO,exc}~({\rm pb})$	$52.1^{egin{array}{c}+0.0\-1.7\end{array}$	$53.5^{+0.2}_{-2.4}$	$24.6 {+0.3 \atop -1.2}$	$24.7^{egin{array}{c}+0.3\-1.6\end{array}$
	$\sqrt{s} = 14 { m TeV}$			
$\sigma_{LO}~({\rm pb})$	101^{+26}_{-20}	106^{+30}_{-22}	$46.8^{+13.1}_{-9.6}$	$46.8^{+12.7}_{-9.9}$
$\sigma_{NLO,inc}$ (pb)	145^{+20}_{-17}	148^{+24}_{-19}	$66.6^{+8.8}_{-8.3}$	$66.1^{+10.5}_{-9.1}$
$\sigma_{NLO,exc}$ (pb)	$88.4^{+0.0}_{-3.0}$	90.0 + 0.0 - 1.6	$43.7^{+0.0}_{-1.6}$	43.5 + 0.4 - 1.9

 \longrightarrow NLO distributions cannot be rescaled from LO ones via a K-factor; \longrightarrow large corrections in particular for $Wb\bar{b}$ and in the inclusive case.

Comparison with massless b-quark results ...

$$W + 1 b$$
-jet

Campbell, Ellis, Febres Cordero, Maltoni, L.R., Wackeroth, Willenbrock (PRD 79:034023, 2009)

Consistently combine 4FNS $(m_b \neq 0)$ and 5FNS $(m_b = 0)$ at NLO in QCD:

1. $q\bar{q}' \to Wb\bar{b}$ at tree level and one loop $(m_b \neq 0)$ 2. $q\bar{q}' \to Wb\bar{b}g$ at tree level $(m_b \neq 0)$ 3. $bq \to Wbq'$ at tree level and one loop $(m_b = 0)$ 4. $bq \to Wbq'g$ and $bg \to Wbq'\bar{q}$ at tree level $(m_b = 0)$ 5. $gq \to Wb\bar{b}q'$ at tree level $(m_b \neq 0) \to$ avoiding double counting:

 \longrightarrow indeed: a fully consistent NLO 5FNS calculation (S-ACOT scheme).

- improved scale dependence: NLO corrections to $gq \rightarrow Wb\bar{b}q'$ partially included;
- need to keep $m_b \neq 0$ for final state b quarks (one b quark has low p_T)

- four signatures studied: exclusive/inclusive, with single and double-*b* jets, using $p_T^j > 15$ GeV, $|\eta^j| < 2 - 2.5$, cone algorithm with $\Delta R = 0.7$:
 - $\rightarrow Wb, W(b\bar{b}) \text{ (exclusive)}$

 $\rightarrow Wb$ and Wb + j, $W(b\bar{b})$ and $W(b\bar{b}) + j$ (inclusive)

which can be combined to obtain different backgrounds, ...

• both contributions play important complementary roles (Tevatron/LHC, inclusive/exclusive);

• <u>NLO results</u> at a glance:

	Exclusive cross sections (pb)		
Collider	Wb	$W(bar{b})$	
$\mathrm{TeV} \ W^+(=W^-)$	8.02 + 0.62[-0.05] = 8.64	3.73 - 0.02[-0.02] = 3.71	
LHC W^+	40.0 + 48.4[22.6] = 88.4	22.7 + 11.7[11.7] = 34.4	
LHC W^-	29.8 + 29.4 [12.6] = 59.2	17.2 + 6.5[6.5] = 23.7	

	Inclusive cross sections (pb)		
Collider	Wb + X	$W(b\bar{b}) + X$	
$TeV W^+ (= W^-)$	11.77 + 2.40[0.77] = 14.17	4.17 + 0.39[0.39] = 4.56	
LHC W^+	53.6 + 136.1[68.9] = 189.7	25.1 + 35.9[35.9] = 61.0	
LHC W^-	39.3 + 88.2[44.6] = 127.5	18.9 + 23.6[23.6] = 42.5	

 \longrightarrow first number: Processes 1 + 2 (pure 4FNS)

 \longrightarrow second number: Processes $3 + \dots + 5$ (pure 5FNS plus $qg \rightarrow Wb\bar{b} + q'$)

 \longrightarrow number in square brackets: Process 5 alone $(qg \rightarrow Wb\bar{b} + q')$

Comparison with CDF measurement: a puzzle?

CDF Note 9321:

 $\sigma_{\rm b-jet}(W + b\,{\rm jets}) \cdot Br(W \rightarrow l\nu) = 2.74 \pm 0.27({\rm stat}) \pm 0.42({\rm syst}) \,{\rm pb}$

(Neu, Thomson, Heinrich)

ALPGEN prediction: 0.78 pb

From our W + 1b calculation:

 $\sigma_{\rm b-jet}(W + b \, {\rm jets}) \cdot Br(W \to l\nu) = 1.22 \pm 0.14 \, {\rm pb}$

- \longrightarrow consistency of theoretical results (good!);
- \longrightarrow waiting for experimental distributions to compare to;
- \longrightarrow important to have a separate analysis from D0!

Ongoing and future activity on $W/ZQ\bar{Q}$ production ...

- Provide input to experimental studies:
 - ▷ DØ, CDF: W + b study, Higgs and single-top working groups;
 - CMS Higgs working group: provide parton level distributions with specific cuts and interface with NLO parton shower Monte Carlo (POWHEG):
 - \rightarrow study Z + 2b as background to $H \rightarrow ZZ$ inclusive production;
 - \rightarrow study Z + 2b and Z + 1b to measure b-PDF.
 - ▷ ATLAS study of WH with $H \rightarrow b\bar{b}$ in boosted regime (Butterworth, Piacquadio, et al.).
- Z + 1b-jet using both 4FNS with $m_b \neq 0$ and 5FNS NLO calculations:
 - \triangleright $bg \rightarrow Zb$ at tree level and one loop (with $m_b = 0$);
 - $\triangleright bg \rightarrow Zb + g, bq \rightarrow Zb + q \text{ (with } m_b = 0);$
 - ▷ $q\bar{q}, gg \rightarrow Zb\bar{b}$ at tree level and one loop (with $m_b \neq 0$);
 - ▷ $q\bar{q}, gg \to Zb\bar{b} + g$ and $gq(g\bar{q}) \to Zb\bar{b} + q(\bar{q})$ (with $m_b \neq 0$).

quite different pattern: one loop corrections to $q\bar{q}, gg \rightarrow b\bar{b}Z$ are now a piece of the NNLO 5FNS calculation, comparable to two-loop corrections to (and double parton emission from) $bg \rightarrow Zb$ (?)

- Possible to use Z + 1b to measure b-PDF? \rightarrow reduce the PDF error in H + 1b production?
- Resum large final state collinear logs from $g \to b\bar{b}$ splitting in $Wg \to Wb\bar{b}$ (and $Zg \to Zb\bar{b}$).
- Need too investigate NLO corrections to $qg(\bar{q}g) \rightarrow Wb\bar{b} + q'(\bar{q}')$? (now within reach)