Top quark at colliders

Laura Reina

2006 CTEQ Summer School, Rhodes, Greece

Introduction and Outline

- The top quark has a very large width ($\Gamma_t \simeq 1.5 \,\text{GeV} \gg \Lambda_{\text{QCD}}$) and decays before it would form a meson: very clean laboratory for strong and electroweak interactions.
- What do we know: it has been discovered (!) (CDF/D \emptyset , 1995) and its mass has been measured ($m_t = 172.5 \pm 2.3$ GeV).
- What do we need to explore further:
 - \longrightarrow strong and EW couplings ($\rightarrow t\bar{t}$ and single-top production);
 - \longrightarrow mass: precision needed to constrain $M_H (\rightarrow t\bar{t} \text{ production});$
 - \longrightarrow Yukawa coupling to the Higgs boson ($\rightarrow t\bar{t}H$ production).

Status of theoretical predictions and experimental measurements.

- The top laboratory is even richer:
 - \longrightarrow top-decays and polarization measurements.
- Main focus: hadron colliders.

The top quark in the Standard Model

The top quark gauge Lagrangian in the Standard Model (SM) is:

where the SM covariant derivative D^{μ} is:

$$D_{\mu} = \partial^{\mu} + ig_s G^a_{\mu} T^a + ig W^i_{\mu} T^i + ig' B_{\mu} Y$$

in terms of the generators and gauge bosons of $SU(3)_{color}$ (T^a, G^a_{μ}, g_s) , $SU(2)_W$ (T^i, W^i_{μ}, g) , and $U(1)_Y$ (Y, B_{μ}, g') gauge groups, while:

$$Z_{\mu} = \cos \theta_W W_{\mu}^3 - \sin \theta_W B_{\mu} \quad , \quad A_{\mu} = \sin \theta_W W_{\mu}^3 + \cos \theta_W B_{\mu}$$

in terms of θ_W , the Weinberg's angle.

In addition, the coupling to the Higgs boson field (H), upon SSB, is:

$$\mathcal{L}_{\text{Yukawa}} = -y_t \bar{t} t H$$

with $y_t = m_t/v$ $(v = (\sqrt{2}G_F)^{-1/2} \simeq 246 \text{ GeV}).$

When expressed in terms of mass eigenstates, the charged current interactions introduce flavor mixing in the SM:

$$\mathcal{L}_{W^{\pm}} = gW_{\mu}^{-} \sum_{i=u,c,t;j=d,s,b} V_{ij}\bar{q}_{i}\gamma^{\mu}q_{j} + \text{h.c.}$$

Where V_{ij} are the elements of the Cabibbo-Kobayashi-Maskawa matrix:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

 V_{tj} (j = d, s, b) parametrize the weak interactions of the top quark. Indeed, the top quark is intrinsically related to the origin of CP-violation in the SM:

3 generations \longrightarrow one complex phase in V_{CKM} .

Assuming only 3 generations:

Add one more heavy generation: $|V_{tb} > 0.7| \rightarrow$ much weaker bound.

Top mass and Electroweak Precision Physics

EW Radiative corrections depend on the top mass (m_t) . Using the value measured at the Tevatron, EW precision fits can constrain the Higgs boson mass (M_H) .

Both top quark and Higgs boson contributing to 1-loop W/Z propagators:

Assuming α , G_F and M_Z as inputs, M_W^2 at 1-loop is given by:

$$M_W^2 = \frac{\pi\alpha}{\sqrt{2}G_F \sin^2 \theta_W} \frac{1}{1 - \Delta r(m_t, M_H)}$$

where

$$\Delta r(m_t, M_H) \simeq c_t m_t^2 + c_H \ln\left(\frac{M_H^2}{M_Z^2}\right) + \cdots$$

M_H very sensitive to small variations of m_t (and M_W !)

"old": early Summer 2005 $m_t = 178.0 \pm 4.3 \text{ GeV}$ "new": late Summer 2005 $m_t = 172.7 \pm 2.9 \text{ GeV}$ \downarrow Since Winter 2006: $m_t = 172.5 \pm 2.3 \text{ GeV}$

LEP1 and SLD \rightarrow indirect measurement (neutral-current data) LEP2 and Tevatron \rightarrow direct measurement shaded area \rightarrow SM relation between m_t and M_W as a function of M_H $\Delta \alpha \rightarrow$ additional theoretical uncertainty by varying α by 1σ . as we can see from the famous blue-band plot ...

How accurately will we know m_t in the future? $\Delta m_t \simeq 2 \text{ GeV (Tevatron)}$ $\Delta m_t \simeq 1 \text{ GeV (LHC)}$

A little bit of history ...

(C. Quigg)

Top quark Yukawa coupling and more ...

The SM Higgs boson couple to the top quark in two production modes: \rightarrow gluon-gluon fusion: indirect determination of y_t .

 \longrightarrow associated production with $t\bar{t}$ pair: direct determination of y_t .

Can the top Yukawa coupling be measured?

It comes from a more general strategy aimed at determining several couplings at once. Consider all accessible channels <u>at the LHC</u>:

• Below 130-140 GeV $gg \rightarrow H, H \rightarrow \gamma\gamma, WW, ZZ$ $qq \rightarrow qqH, H \rightarrow \gamma\gamma, WW, ZZ, \tau\tau$ $q\bar{q}, gg \rightarrow t\bar{t}H, H \rightarrow b\bar{b}, \tau\tau$

• Above 130-140 GeV

$$gg \rightarrow H, H \rightarrow WW, ZZ$$

 $qq \rightarrow qqH, H \rightarrow \gamma\gamma, WW, ZZ$
 $\boxed{q\bar{q}, gg \rightarrow t\bar{t}H, H \rightarrow WW}$

 $(t\bar{t}H : F.Maltoni, D.Rainwater, S.Willenbrock, A.Belyaev, L.R.)$

Observing a given production+decay (p+d) channel gives a relation:

$$(\sigma_p(H)\operatorname{Br}(H \to dd))^{exp} = \frac{\sigma_p^{th}(H)}{\Gamma_p^{th}} \frac{\Gamma_d \Gamma_p}{\Gamma}$$

(in the narrow Higgs approximation).

Associate to <u>each channel</u> $(\sigma_p(H) \times Br(H \to dd))$

$$Z_d^{(p)} = \frac{\Gamma_p \Gamma_d}{\Gamma} \qquad \begin{cases} \Gamma_p \simeq g_{Hpp}^2 = y_p^2 \to \text{production} \\ \Gamma_d \simeq g_{Hdd}^2 = y_d^2 \to \text{decay} \end{cases}$$

From LHC measurements, given the current simulated accuracies:

• Determine in a model independent way ratios of couplings at the 10 - 20% level, for example:

$$\frac{y_t}{y_g} \quad \longleftrightarrow \quad \frac{\Gamma_t}{\Gamma_g} = \frac{Z_\tau^{(t)} Z_\gamma^{(w)}}{Z_\tau^{(w)} Z_\gamma^{(g)}}$$

• Determine individual couplings at the 10-30% level (under the assumption: $\Gamma = \Gamma_b + \Gamma_\tau + \Gamma_w + \Gamma_z + \Gamma_g + \Gamma_\gamma$)

(M.Dührssen, S.Heinemeyer, H.Logan, D.Rainwater, G.Weiglein, D.Zeppenfeld, PRD 70 (2004) 113009)

Top quark decays

The top quark decays before it can form a bound state:

$$\begin{array}{c} \hline \tau_t \simeq 10^{-25} \ {\rm sec} \end{array} \quad {\rm compared to} \qquad \hline \tau_{\rm QCD} \simeq 10^{-24} \ {\rm sec} \end{array} \\ \mbox{and it decays predominantly as:} \\ t \longrightarrow \int t \end{array} \quad t \longrightarrow bW^+ \quad \begin{cases} W^+ \to l^+ \nu_l \\ W^+ \to q\bar{q'} \end{cases}$$

It is instructive to derive the decay rate explicitly and see how the structure of the interaction constrains the helicity of the W-boson.

\Downarrow

The W coming from $t \to bW^+$ can only be (for $m_b \to 0$) either left-handed or longitudinal, never right-handed, because of angular momentum conservation.

How do you go calculating it ...

The decay amplitude for $t(p_t) \to b(p_b)W^+(p_W)$ comes straight from the top-quark EW Feynman rules:

$$\mathcal{A}(t \to bW^+) = -\frac{ig}{2\sqrt{2}} V_{tb} \bar{u}(p_b) \gamma^{\mu} (1 - \gamma_5) u(p_t) \ \epsilon^{\lambda *}_{\mu}(p_W)$$

and the decay rate, for a given W-boson polarization, is calculated as:

$$\frac{1}{2m_t} \int d(PS_2) \overline{\sum} |\mathcal{A}(t \to bW^+)|^2$$

Assume the top-quark is unpolarized, to start with, and work in its rest frame. Then the momentum configuration can be parametrized as:

$$p_{t} = (m_{t}, 0, 0, 0)$$

$$p_{W} = (E_{W}, 0, p \sin \theta_{W}^{t}, p \cos \theta_{W}^{t})$$

$$p_{b} = (E_{b}, 0, -p \sin \theta_{W}^{t}, -p \cos \theta_{W}^{t})$$
with $E_{W} = \frac{m_{t}^{2} + M_{W}^{2}}{2m_{t}}$ and $p = \frac{m_{t}^{2} - M_{W}^{2}}{2m_{t}}$, while the W polarization vectors are:
$$\epsilon_{0} = \frac{1}{M_{W}} \left(p, 0, E_{W} \sin \theta_{W}^{t}, E_{W} \cos \theta_{W}^{t} \right)$$

$$\epsilon_{\pm} = \frac{1}{\sqrt{2}} \left(0, 1, \pm i \cos \theta_{W}^{t}, \mp \sin \theta_{W}^{t} \right)$$

Neglecting the mass of the *b* quark $(m_b \rightarrow 0)$, one gets:

$$\overline{\sum} |\mathcal{A}(t \to bW^+)|^2 = \frac{g^2}{8} |V_{tb}|^2 \operatorname{Tr}\left[(p_t' + m_t)\epsilon_{\lambda}^*(1 - \gamma_5)p_{b}'\epsilon_{\lambda}\right]$$

and substituting the explicit polarization vectors one derives that:

$$\overline{\sum} |\mathcal{A}_{-}|^{2} = \frac{2G_{F}m_{t}^{4}}{\sqrt{2}}|V_{tb}|^{2}2x^{2}(1-x^{2})$$
$$\overline{\sum} |\mathcal{A}_{0}|^{2} = \frac{2G_{F}m_{t}^{4}}{\sqrt{2}}|V_{tb}|^{2}(1-x^{2})$$

for $x = \frac{M_W}{m_t}$, such that:

$$F_0 = \frac{\Gamma_0}{\Gamma_{\text{tot}}} = \frac{1}{1+2x^2} = \frac{m_t^2}{m_t^2 + 2M_W^2} \simeq 0.70$$

Experimentally:

$$F_0 = 0.74^{+0.22}_{-0.34} \text{ (stat+syst) (CDF)}$$

 $F_+ < 0.27 \text{ at } 95\% \text{ c.l. (CDF)}$
 $F_+ < 0.25 \text{ at } 95\% \text{ c.l. (D\emptyset)}$

 $\Gamma(t \to bW)$ also measure $|V_{tb}| \ldots$

$$R_{tb} = \frac{\Gamma(t \to bW)}{\Gamma(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} =$$

Assuming unitarity $(|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 = 1)$, R_{tb} measures $|V_{tb}|$. Experimentally:

$$\begin{cases} R_{tb} = 1.12^{+0.21+0.17}_{-0.19-0.13} \text{ (stat+syst) (CDF)} \\ R_{tb} > 0.61 \longrightarrow |V_{tb}| > 0.78 \text{ at } 95\% \text{ c.l. (CDF)} \\ \end{cases}$$

$$\begin{cases} R_{tb} = 1.03^{+0.19}_{-0.17} \text{ (stat+syst) (D\emptyset)} \\ R_{tb} > 0.61 \longrightarrow |V_{tb}| > 0.78 \text{ at } 95\% \text{ c.l. (D\emptyset)} \end{cases}$$

Polarized top quarks ...

Even more interesting phenomena when decaying top-quarks are polarized $(\text{spin}=\pm\frac{1}{2}\hat{s}^{\mu})$, for a generic direction vector $\hat{s}^{\mu})$.

Using the same formalism introduced above, but now summing over W helicities and adding the $W^+ \to l^+ \nu_l$ decay, one finds:

$$|\mathcal{A}|^2 = g^4 |V_{tb}|^2 \frac{1}{[(p_t - p_b)^2 - M_W^2]^2} (\bar{p}_t \cdot p_l \, p_b \cdot p_\nu) \propto (1 + \cos \chi_l^t)$$

where $\bar{p}_t^{\mu} = p_t^{\mu} - m_t s^{\mu}$ and χ_l^t is the angle of the charge lepton in the top-quark c.o.m. frame.

\downarrow

The second stage decay is 100% correlated to the parent top-quark!.

Top quark pair production: $q\bar{q}, gg \rightarrow t\bar{t}$

<u>Tevatron</u>: $t\bar{t}$ pair produced close to kinematic threshold $(\hat{s} \simeq 4m_t^2)$, henceforth large x dominated, while not so at the LHC.

Tevatron Run I discovered the top quark in $t\bar{t}$ production with $\simeq 100 t\bar{t}$ pairs. Run II has already accumulated larger statistics. The LHC will be a top factory (≥ 8 millions top pairs/year/experiment). The production rate of $t\bar{t}$ pairs at hadron colliders is a crucial test of top-quark strong interactions.

A precise theoretical understanding of the dynamics of $t\bar{t}$ pair production is mandatory to:

- \longrightarrow match the experimental precision coming from such huge statistics;
- \rightarrow obtain a precision mass measurement (\rightarrow see EW precision tests);
- \longrightarrow disentangle new physics (new production channels should give more $t\bar{t}$ pairs, new top-quark decay modes should give less).

\downarrow

Complete NLO calculation exists for total and differential cross-sections:

- → P. Nason, S. Dawson, R.K. Ellis, NPB 303 (1988) 607, NPB 327 (1989) 49;
- → W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith PRD 40 (1989) 54; (with R. Meng and G.A. Schuler) NPB 351 (1991) 507.

 $(\rightarrow \text{see Practical NLO calculation})$

Beyond NLO: various approximate all-order results exist.

Origin of large corrections ...

Large logarithmically-enhanced corrections arise in production cross-sections of high-mass systems near threshold $(\hat{s} = 4m_t^2)$. Consider the $t\bar{t}$ production cross-section in the form:

$$\hat{\sigma}_{ij}^{NLO}(\rho, m_t^2, \mu) = \frac{\alpha_s^2(\mu)}{m_t^2} \left\{ c_{ij}^0(\rho) + 4\pi\alpha_s(\mu) \left[c_{ij}^1(\rho) + \bar{c}_{ij}^1(\rho) \ln\left(\frac{\mu^2}{m_t^2}\right) \right] \right\}$$

where $\rho = \frac{4m_t^2}{\hat{s}}$. The <u>threshold behavior</u> of the cross-section <u>at LO</u> is:

$$c_{q\bar{q}}^{0}(\rho) \stackrel{\beta \to 0}{\simeq} \frac{T_{R}C_{F}}{2N_{c}}\pi\beta \to 0 \quad , \quad c_{gg}^{0}(\rho) \stackrel{\beta \to 0}{\simeq} \frac{T_{R}}{N_{c}^{2}-1} \left(C_{F}-\frac{C_{A}}{2}\right)\pi\beta \to 0$$

(where $\beta = \sqrt{1 - \rho}$), while <u>at NLO</u> is:

$$\begin{aligned} c_{q\bar{q}}^{1}(\rho) &\xrightarrow{\beta \to 0} \frac{1}{4\pi^{2}} c_{q\bar{q}}^{0}(\rho) \left[\left(C_{F} - \frac{C_{A}}{2} \right) \frac{\pi^{2}}{2\beta} + 2C_{F} \ln^{2}(8\beta^{2}) - (8C_{F} + C_{A})\ln(8\beta^{2}) \right] \\ c_{gg}^{1}(\rho) &\xrightarrow{\beta \to 0} \frac{1}{4\pi^{2}} c_{gg}^{0}(\rho) \left[\frac{N_{c}^{2} + 2}{N_{c}(N_{c}^{2} - 2)} \frac{\pi^{2}}{4\beta} + 2C_{A} \ln^{2}(8\beta^{2}) - \frac{(9N_{c}^{2} - 20)C_{A}}{N_{c}^{2} - 2} \ln(8\beta^{2}) \right] \\ \bar{c}_{q\bar{q}}^{1}(\rho) \ln \left(\frac{\mu^{2}}{m_{t}^{2}} \right) \xrightarrow{\beta \to 0} \frac{1}{4\pi^{2}} c_{q\bar{q}}^{0}(\rho) \left[-2C_{F} \ln(4\beta^{2}) \ln \left(\frac{\mu^{2}}{m_{t}^{2}} \right) + \bar{C}_{2} \left(\frac{\mu^{2}}{m_{t}^{2}} \right) \right] \\ \bar{c}_{gg}^{1}(\rho) \ln \left(\frac{\mu^{2}}{m_{t}^{2}} \right) \xrightarrow{\beta \to 0} \frac{1}{4\pi^{2}} c_{gg}^{0}(\rho) \left[-2C_{A} \ln(4\beta^{2}) \ln \left(\frac{\mu^{2}}{m_{t}^{2}} \right) + \bar{C}_{3} \left(\frac{\mu^{2}}{m_{t}^{2}} \right) \right] \end{aligned}$$

Threshold logarithms can be resummed via exponentiation: similar to Drell-Yan (DY), more complicated because of color structure.

Traditional to work in moment space, or Mellin-transformed space, or N-space. The Mellin-transformed cross-section of $\sigma(\rho, m_t^2)$ is defined as:

$$\hat{\sigma}_N(m^2) = \int_0^1 d\rho \rho^{N-1} \hat{\sigma}(\rho, m^2)$$

The threshold region corresponds to the $N \to \infty$ limit and threshold corrections have the following structure:

$$\hat{\sigma}_N^{LO} \left[1 + \sum_{n=1}^{\infty} \alpha_s^n \sum_{m=1}^{2n} c_{n,m} \ln^m N \right]$$

In DY this structure can be organized in a radiative factor $\Delta_{DY,N}$ of exponential form:

$$\Delta_{DY,N}(\alpha_s) = \exp\left[\sum_{n=1}^{\infty} \alpha_s^n \sum_{m=1}^{n+1} G_{nm} \ln^m N\right]$$

=
$$\exp\left[\underbrace{\ln N g_{DY}^{(1)}(\alpha_s \ln N)}_{LL} + \underbrace{g_{DY}^{(2)}(\alpha_s \ln N)}_{NLL} + \underbrace{\alpha_s g_{DY}^{(3)}(\alpha_s \ln N)}_{NNLL} + \cdots\right]$$

Generalization to $t\bar{t}$ production complicated by:

- $\longrightarrow q\bar{q}$ and gg initial states;
- \longrightarrow soft-gluon emission from both initial and final states: color exchange in the hard subprocess.

The resummed cross-section (N-space) can be cast into the form:

$$\hat{\sigma}_{ij}^{(res)} = \sum_{\mathbf{I},\mathbf{J}} M_{ij,\mathbf{I},N}^{\dagger} [\Delta_{ij,N}]_{\mathbf{I},\mathbf{J}} M_{ij,\mathbf{J},N}$$

where the sum is extended to all possible color states I and J. $[\Delta_{ij,N}]_{I,J}$ is the radiation factor, a matrix in the space of color states, and contains all the resummed soft logarithms.

Formalism proposed by:

→ N. Kidonakis, G. Sterman, PLB 387 (1996) 867, NPB 478 (1996) 273

and implemented in:

- \longrightarrow R. Bonciani, S. Catani, M. Mangano, P. Nason, NPB 529 (1998) 424
- \longrightarrow N. Kidonakis, R. Vogt, PRD 68 (2003) 1140014
- \longrightarrow M. Cacciari, S. Frixione, M. Mangano, P. Nason, JHEP 04 (2004) 68

Back to the plot we saw in "Practical NLO calculation":

(R. Bonciani, S. Catani, M. Mangano, P. Nason, NPB 529 (1998) 424)

NLO \rightarrow scale uncertainty $\simeq \pm 10\%$ NLO+NNL \rightarrow scale uncertainty $\simeq \pm 5\%$ Including PDF uncertainty: $\simeq \pm 15\%$ residual uncertainty in theoretical prediction.

(M. Cacciari, S. Frixione, M. Mangano, P. Nason, JHEP 04 (2004) 68)

comparing to experimental results ...

NLO and resummation of soft corrections crucial to match the $t\bar{t}$ cross-section measurement so closely.

Single top production: measuring V_{tb}

- *t*-channel dominated both at the Tevatron and at the LHC.
- Wt associated production: LHC only.
- *s*-channel and *t*-channel have distinct signatures (2*b* vs 1*b* tag). Important because *s*- and *t*-channels are:
 - \rightarrow sensitive to different kinds of new physics (s-channel more sensitive to new resonances, t-channel more sensitive to new couplings);
 - \rightarrow sensitive to different theoretical approaches (t-channel calculated using a b-quark density \rightarrow 5FNS).

On the issue of a b-quark density ...

- → Large collinear logarithms of the form $\ln\left(\frac{m_t^2}{m_b^2}\right)$ arise at each order in α_s from $g \to b\bar{b}$ splitting (when integrating over the phase space of the final state on-shell *b*-quark).
- \rightarrow Switch to perturbative expansion in $\alpha_s \ln\left(\frac{m_t^2}{m_b^2}\right)$ instead of α_s .
- \rightarrow Resum powers of $\alpha_s \ln\left(\frac{m_t^2}{m_b^2}\right)$ (appearing from further gluon emission at all orders in α_s) by defining a *b*-quark PDF evolved through DGLAP equation.
- \rightarrow measuring single-top production in *t*-channel could be an important cross-check of $b(x, \mu)$.

How to measure V_{tb} ? Use two cross-sections:

$$\sigma_{t\bar{t}}^{exp} = \sigma_{t\bar{t}}^{th} \operatorname{Br}(t \to bW)^2$$

to measure $Br(t \rightarrow bW)$ and then

$$\sigma_t^{exp} = \sigma_t^{th} |V_{tb}|^2 \operatorname{Br}(t \to bW)$$

to extract V_{tb} .

NLO QCD corrections calculated for total cross section and distributions:

- \rightarrow M.C. Smith, S. Willenbrock, PRD 54 (1996) 6696;
- \rightarrow T. Stelzer, Z. Sullivan, S. Willenbrock, PRD 56 (1997) 5919;
- \rightarrow T. Stelzer, Z. Sullivan, S. Willenbrock, PRD 58 (1998) 0904021;
- \rightarrow B. W. Harris, E. Laenen, L. Phaf, Z. Sullivan, S. Weinzierl, PRD 66 (2002) 054024
- \rightarrow Z. Sullivan, PRD 70 (2004) 114012
- \rightarrow J. Campbell, R. K. Ellis, F. Tramontano, PRD 70 (2004) 094012
- \rightarrow Q.-H. Cao, R. Schwienhorst, C.-P. Yuan, PRD 71 (2005) 054023

Tevatron: closing in on single-top production ...

$t\bar{t}H$ associated production: determining y_t .

Small cross-section, but very neat signal. Probably not within the kinematic reach of the Tevatron, but very important at the LHC for discovery and direct determination of the top-quark Yukawa coupling y_t . Complete <u>NLO calculation available</u>: scale uncertainty reduced to $\simeq 15\%$

- → W.Beenakker, S.Dittmaier, M.Krämer, B.Plümper, M.Spira, P.M.Zerwas (PRL 87(2001), NPB 653(2003))
- \longrightarrow S.Dawson, L.R., D.Wackeroth (PRL 87(2001), PRD 65(2002))
- \longrightarrow S.Dawson, C.Jackson, L.H.Orr, L.R., D.Wackeroth (PRD 67(2003), PRD 68(2003))

Conclusions

- Top-quark physics at hadron colliders constitutes a unique laboratory to test both strong and electroweak interactions.
- Its large mass makes the top quark a special candidate to explore spontaneous symmetry breaking. Moreover: m_t strongly influence the bound on M_H from precision electroweak fits.
- All main production modes (single-top, $t\bar{t}$ pairs, $t\bar{t}H$ associated production) are known at NLO in QCD, and large threshold corrections have been resummed when needed.
- We expect crucial developments both at the Tevatron and at the LHC:
 - \longrightarrow Tevatron: single-top discovery $(V_{tb}, \ldots);$
 - \longrightarrow LHC: measurement of y_t via $t\bar{t}H$ production.
- We did not discuss top-quark physics at a high energy e⁺e⁻ collider (ILC). For the most updated studies, see "Report of the 2005 Snowmass Top/QCD Working Group, hep-ph/0601112.