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Outline of this lecture

• Setting the frame: basic concepts and terminology.

• Structure of a Next-to-Leading (NLO) calculation:

−→ virtual corrections: Feynman diagram approach versus new techniques

based on generalized unitarity and on-shell recursion relations;

−→ real corrections: isolating IR divergences and matching with virtual

corrections and parton densities.

• Examples of NLO results: what do we gain?

• When is NLO not enough? Examples of physical observables that require

various levels of improvement:

−→ one more order in the perturbative expansion: going

Next-to-Next-to-Leading Order (NNLO);

−→ resummation of large corrections at all orders: reordering the

perturbative expansion.



Setting the Frame

• Hadron colliders (Tevatron, LHC) are the present and close future

of particle physics: emphasis on QCD (→ see G. Sterman’s lectures).

• We will learn about the properties of NLO calculations by considering:

−→ prototype process: QCD top quark pair production, qq̄, gg → tt̄

(→ see F. Olness’s lectures on Heavy Quarks).

−→ first order of QCD corrections;

−→ total/differential cross-sections.

• I will assume a basic knowledge of some fundamental topics of

Quantum Field Theory as encountered in Quantum Electrodynamics:

−→ perturbative calculation of cross-section from Feynman diagrams;

−→ origin of ultraviolet (UV) and infrared (IR) divergences;

−→ regularization and renormalization of UV divergences;

−→ cancellation of IR divergences for IR-safe observables.



The basic picture of a pp̄, pp → X high energy process is . . .
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where the short and long distance part of the QCD interactions can be

factorized and the cross section for pp, pp̄ → X can be calculated as:

dσ(pp, pp̄ → X) =
∑

ij

∫

dx1dx2fi
p(x1, µF )fj

p,p̄(x2, µF )dσ̂(ij → X, x1, x2, Q
2, µF )

−→ ij → quarks or gluons (partons)

−→ fi
p(x), fi

p,p̄(x): Parton Distributions Functions (PDF)

(x → fraction of hadron momentum carried by parton i)

−→ dσ̂(ij → X): partonic cross section

−→ µF : factorization scale.

−→ Q2: hard scattering scale.



−→ In the ij → X process, initial and final state partons radiate and

absorb gluons/quarks (both real and virtual).

−→ Due to the very same interactions: the strong coupling constant

(αs=g2s/4π) becomes small at large energies (Q2):

αs(Q
2) → 0 for large scales Q2 : asymptotic freedom

−→ We can calculate dσ̂(ij → X) perturbatively:

dσ̂(ij → X) = αk
s

∞
∑

m=0

dσ̂
(m)
ij αm

s

n=0 : Leading Order (LO), or tree level or Born level

n=1 : Next to Leading Order (NLO), includes O(αs) corrections

. . . . . .

−→ We can calculate the evolution of the PDF’s perturbatively
(from DGLAP equation): LO, NLO, . . . PDF’s.



Perturbative approach and scale dependence . . .

−→ At each order in αs both partonic cross section and PDF’s have a

residual factorization scale dependence (µF ).

−→ At each order in αs the expression of σ̂(ij → X) contains UV infinities

that are renormalized. A remnant of the subtraction point is left at

each perturbative order as a renormalization scale dependence (µR)

dσ̂(ij → X,Q2, µF ) = αk
s (µR)

∞
∑

m=0

dσ̂
(m)
ij (Q2, µF , µR)α

m
s (µR)

Setting µR = µF = µ (often adopted simplifying assumption):

dσ =
∑

ij

∫

dx1dx2f
p
i (x1, µ)f

p,p̄
j (x2, µ)

∞
∑

m=0

dσ̂
(m)
ij (x1, x2, Q

2, µ)αm+k
s (µ)

The residual scale dependence should improve with the
perturbative order



General structure of a NLO calculation

NLO cross-section:

dσNLO

pp̄,pp =
∑

i,j

∫

dx1dx2f
p
i (x1, µ)f

p̄,p
j (x2, µ)dσ̂

NLO

ij (x1, x2, µ)

where

dσ̂NLO

ij = dσ̂LO

ij +
αs

4π
δdσ̂NLO

ij

NLO corrections made of:

δdσ̂NLO

ij = dσ̂virt
ij + dσ̂real

ij

• dσ̂virt
ij : one loop virtual corrections.

• dσ̂real
ij : one gluon/quark real emission.

• use αNLO

s (µ) and match with NLO PDF’s.

−→ renormalize UV divergences (d=4− 2ǫUV )

−→ cancel IR divergences in dσ̂virt
ij + dσ̂real

ij + PDF’s (d=4− 2ǫIR)

−→ check µ-dependence of dσNLO

pp̄,pp (µR,µF )



On the issue of scale dependence . . .

At a given order, the dependence on the renormalization/factorization

scales is a higher order effect.

Let us rewrite dσ̂NLO
ij (x1, x2, µ) making the scale dependence explicit:

dσ̂NLO

ij (x1, x2, µ) = αk
s (µ)

{

FLO

ij (x1, x2) +
αs(µ)

4π

[

F1
ij(x1, x2) + F̄1

ij(x1, x2) ln

(

µ2

ŝ

)]}

F̄1
ij(x1, x2) can be calculated by imposing that the hadronic cross-section is scale

independent at the perturbative order of the calculation (NLO), i.e.:

µ2 d

dµ2
dσNLO

pp̄,pp = O(α(k+2)
s )

Using that µ2 d
dµ2 αs(µ) = −b0α

2
s + · · ·, and the DGLAP equation for the scale

evolution of PDF’s, one gets:

F̄1
ij(x1, x2) = 2

{

4πb0F
LO

ij (x1, x2)

−
∑

k

[
∫ 1

ρ

dz1Pik(z1)F
LO

kj (x1z1, x2) +

∫ 1

ρ

dz2Pjk(z2)F
LO

ik (x1, x2z2)

]

}

(Pij −→ Altarelli-Parisi splitting functions).



Approaching virtual corrections . . .

The O(αs) virtual corrections to the cross-section arise from the

interference between the tree level amplitude A0(ij → {f}) and the

one-loop virtual amplitude Avirt
1 (ij → {f}):

dσ̂virt
ij =

∫

d(PS{f})
∑

2Re(Avirt
1 A∗

0)

A0 and Avirt
1 can be further organized in terms of

• color structures: color ordered amplitudes (primitive amplitudes);

• helicity/spin amplitudes (massless/massive particles);

and calculated using different methods:

−→ Feynman diagrams: direct perturbative expansion of S-matrix

elements (off-shell intermediate states in loops);

−→ Unitarity methods: determine scattering amplitudes from their

analytical poles and cuts (on-shell intermediate states in loops).



Example: pp̄, pp → tt̄, tree level

qq̄ → tt̄

leading

contribution at

the Tevatron

q

q

t

t

gg → tt̄

leading

contribution at

the LHC

g

g

t

t

g

g

t

t

g

g

t

t

NLO corrections calculated in:

→ P. Nason, S. Dawson, R.K. Ellis, NPB 303 (1988) 607, NPB 327 (1989) 49;

→ W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith PRD 40 (1989) 54;

(with R. Meng and G.A. Schuler) NPB 351 (1991) 507.

NNLO corrections in progress:

→ M. Czakon, A. Mitov, S. Moch, PLB 651 (2007) 174, NPB 798 (2008) 210

M. Czakon, A. Mitov, arXiv:0811.4119.

→ R. Bonciani, et al., arXiv:0806.2301, arXiv:0906.3671, arXiv:1011.6661



pp̄, pp → tt̄: O(αs) virtual corrections using Feynman diagrams

Avirt
1 (qq̄, gg → tt̄) receives contributions from self-energy, vertex, and box type

loop corrections:

q

q

t

t

q

q

t

t q

q t

t

g

g

t

t

g

g

t

t

g

g

t

t

most of which contains UV and IR divergences that need to be extracted

analytically (in D = 4− 2ǫ).

One can isolate color ordered amplitudes observing that:

A0(qq̄ → tt̄) = Aqq̄
0 ta × ta

A1(qq̄ → tt̄) = A
qq̄(1)
1 tatb × tatb +A

qq̄(2)
1 tatb × tbta

A0,1(gg → tt̄) = A
gg(1)
0,1 tatb +A

gg(2)
0,1 tbta

and introduce helicity/spin states if desired.



For each diagram:

• write the corresponding amplitude and reduce the Dirac’s algebra to

fundamental structures;

• the coefficient of each Dirac’s structure contains both scalar and tensor

integrals of the loop momentum;

• tensor integrals can be reduced to scalar integrals;

• scalar integrals are computed and UV and IR divergences are

extracted using dimensional regularization in d = 4− 2ǫ;

• UV divergences (two- and three-point functions) are extracted as poles

in 1
ǫUV

, and subtracted using a given renormalization scheme (MS,

on-shell, etc.);

• IR divergences (two-, three- and four-point functions) are extracted as

poles in 1
ǫ2
IR

and 1
ǫIR

−→ cancelled in dσ̂virt
ij + dσ̂real

ij + PDF’s.



Example. Consider the vertex correction:

(q)

(q)

(t)

(t)

p1

p2

k

k+p1

k+p1+p2

p1+p2

p3

p4

↔

(

q

q

t

t

g(k)
)

the (unpolarized) amplitude associated to this diagram is of the form:

A ∝

∫

ddk

(2π)d
v̄(p2)γρ( 6 k+ 6 p1)γνu(p1)

k2(k + p1)2(k + p1 + p2)2
ū(p3)γµv(p4)

(p1 + p2)2
V µνρ(−p1−p2,−k, k+p1+p2)

and depends on the following scalar/tensor integrals:

C0, C
µ
1 , C

µν
2 (p1, p2) =

∫

ddk

(2π)d
1, kµ, kµkν

k2(k + p1)2(k + p1 + p2)2
=

∫

ddk

(2π)d
1, kµ, kµkν

D3(p1, p2)

Cµν
2 is UV divergent, while all of them are IR divergent, as can be easily

recognized by simple power counting and observing that

D3(p1, p2)
k→k−p1

−→ k2(k − p1)
2(k + p2)

2 k2≃0
−→ k2(k · p1)(k · p2)

• k0 → 0 : soft divergence;
• k · p1 → 0 or k · p2 → 0: collinear divergence.



We can parametrize Cµ
1 and Cµν

2 as:

Cµ
1 (p1, p2) =

∫

ddk

(2π)d
kµ

D3(p1, p2)
= C1

1p
µ
1 + C2

1p
µ
2

Cµν
2 (p1, p2) =

∫

ddk

(2π)d
kµkν

D3(p1, p2)
= C00

2 gµν + C11
2 pµ1p

ν
1 + C22

2 pµ2p
ν
2 +

C12
2 (pµ1p

ν
2 + pν1p

µ
2 )

The tensor integral coefficients can be obtained using different methods.

In this case the easiest way is by saturating the independent tensor

structures: Passarino-Veltman method (NPB 160 (1979) 151).

Ex: C1
1 and C2

1 are very simple:

C1
1 =

1

2p1 · p2
(B012 −B013 − 2p1 · p2C0)

C2
1 =

1

2p1 · p2
(B013 −B023)

where B0ij are scalar integrals with two (out of the three) denominators of C0.



Ultimately, everything is expressed in terms of B0, and C0 scalar integrals.

Introducing the appropriate Feynman’s parameterization the diagram in question

can be written as:

Γ(3)

∫ 1

0

dxx

∫ 1

0

dy

∫

ddk′

(2π)d
Num(k → k′)

[(k′)2 −∆]3

where (k′)µ = (k − x(1− y)p1 + (1− x)p2)
µ and ∆ = −x(1− x)(1− y)2p1 · p2.

Using standard d-dimensional integrals:

∫

ddl

(2π)d
1

(l2 −∆)n
= i

(−1)n

(4π)d/2
Γ(n− d/2)

Γ(n)

1

∆n−d/2

and upon integration over the Feynman parameters one gets (including couplings

and color factor):

αs

4π

(

4πµ

ŝ

)ǫ N

2
Γ(1 + ǫ)

(

−
4

ǫIR
+

3

ǫUV
− 2
)

A0(qq̄ → tt̄)

This is a very simple case, but more complex ones are solved using the

same strategy.



Passarino-Veltman reduction can be problematic when considering

high rank tensor integrals in processes with more external particles.

The tensor integrals coefficients are proportional to inverse powers of the

Gram determinant (GD):

GD = det(pi · pj) (pi, pj → independent external momenta)

(where GD = (p1 · p2)
2 in the example we saw.) For instance, for a 2 → 3

process:

GD(p1 + p2 → p3 + p4 + p5) ≃ f(E3, E4, sin θ3, sin θ4, sinφ4)

GD → 0 when two momenta become degenerate: spurious divergences

that creates numerical instabilities.

Possible alternatives:

−→ Eliminate all dangerous tensor integrals at the level of the amplitude square,

if possible.

−→ Kinematic cuts to avoid numerical instabilities and extrapolation to the

unsafe region using several algorithms.

−→ Expansion of coefficients about limit of vanishing kinematic determinants,

including GD → 0 (→ see, e.g., S. Dittmaier, A. Denner, NPB 734 (2006) 62)



pp̄, pp → tt̄: O(αs) virtual corrections using generalized
unitarity and analytical properties of 1-loop amplitude

As we have seen any color ordered A1(qq̄, gg → tt̄) reduces to a linear

combination of scalar integrals of the form:

A1 =
∑

i

diD0i +
∑

i

ciC0i +
∑

i

biB0i +
∑

i

aiA0i +R1

This is very general, and applies to any one-loop QCD amplitude.

• The (d-dimensional) scalar integrals D0i, C0i, B0i, A0i are known

(collected in: R. K. Ellis and G. Zanderighi, JHEP 0802:002 2008).

• The coefficients of the scalar integrals can be evaluated using generalized

unitarity methods.

• The rational terms R1 can be computed based on the analytic properties of

the amplitude or using d-dimensional generalized unitarity.

Z. Bern, L. Dixon, D. Forde, D. Kosower, et al.

R. K. Ellis, W. Giele, Z. Kunzst, K. Melnikov, G. Zanderighi

G. Ossola, C. G. Papadopoulos, R. Pittau

R. Britto, F. Cachazo, B. Feng



Coefficients di, . . . , ai from generalized unitarity

From the unitarity of the scattering matrix (S = 1 + iT ) one derives that:

−i(T − T †) = T †T

or equivalently:

2 ImA(i → f) =
∑

n

∫

dΠnA
∗(i → n)A(f → n)

The l.h.s. represents the discontinuity of A(sij) across the branch cut

corresponding to the invariant sij , for each sij .

Diagramatically this can be calculated by replacing the two propagators

connecting a set of legs carrying that invariant to the rest of the diagram by

on-shell delta functions (→ Cutkosky rule), e.g.

i

p2 + iǫ
→ πδ+(p2) −→ cut

Example: for a discontinuity in the s12 channel of a 2 → 2 process (k1 = k − k2)

2 ImA1(1+2 → 3+4)|12 =

∫

d4k

(2π)4
πδ+(k2

1)πδ
+(k2

2)A0(k1, 1, 2,−k2)A0(k2, 3, 4,−k1)

where we notice that a 1-loop amplitude (imaginary part of) has been reduced to

the product of tree-level amplitudes, modulus a phase space integration.



A few mores steps . . .

The cutting procedure can be generalized, setting more propagators

on-shell to further reduce the A0 components to fundamental 3- and

4-point tree-level amplitudes.

• 3- and 4-point tree level amplitudes become building blocks: loop

contributions obtained by gluing together tree level amplitudes;

• crucial to simplify them as much as possible and use their symmetry

properties: helicity/spin state formalism most convenient;

• 3-point on-shell amplitudes vanish: need complex kinematic;

• on-shell internal states avoid redundancy of non-physical states: smaller

intermediate expressions;

• most numerical instabilities avoided by automatically combining

contributions from several diagrams;

• residual spurious singularity treated in conjunction with the calculation of

rational terms (R1);

• A0 and Avirt
1 calculated as independent complex numbers in a given spinor

representation: never to deal with large analytic expressions arising from

their interference.



Generalized unitarity leads us to calculate:

ImA1 =
∑

i

di ImD0i +
∑

i

ci ImC0i +
∑

i

bi ImB0i +
∑

i

ai ImA0i

from which, knowing the analytical expression of the 1-loop integrals, we

can determine the coefficients di, . . . ai:

• sets of 4 cuts determine completely each box coefficient di;

• sets of 3 cuts determine completely each vertex coefficient ci, once the 3 cut

contributions of the box integrals have been subtracted;

• . . .

A1|4−cuti = diD0i|4−cut

A1|3−cuti = ciC0i|3−cut +
∑

j

dj D0j |3−cuti

. . .



Rational terms (R1), two options

• Using d-dim generalized unitarity automatically include them in A1
virt,

but is computationally more demanding.

• Using 4-dim generalized unitarity determines A1
virt modulus some

additive ambiguities due to ultraviolet divergences in the scalar

integrals: rational terms (R1) need to be added to fix this ambiguity.

Existing methods make use of: factorization properties of the physical

amplitude (Bern,Dixon,Kosower), combined with on-shell recursion

relations (Britto,Cachazo,Feng):

−→ use analytic continuation of the amplitude in complex plane

(A1 → A1(z)), such that R1 → R1(z);

−→ obtain R1(z = 0) via contour integration in the complex plane:

R1(0) =

∫

γ

R1(z)

z
=

∑

poles zi

Res|z=zi

R1(z)

z
+R∞

where R∞ is the contribution to the contour integral at infinity;

−→ attention must be paid to distinguish between physical and

spurious poles.



pp̄, pp → tt̄: O(αs) real corrections

The O(αs) real corrections to the cross-section arise from the square of the

real gluon/quark emission amplitude Areal
1 (qq̄, gg, qg → tt̄+ (g/q/q̄)):

dσ̂real
ij = d(PS2+(g/q/q̄))

∑

|Areal
1 |2

where Areal
1 receives contributions from diagrams like:

q

q

t

t

g(k)
q

q

t

t

g(k)

g

g

t

t

g(k)
g

g

t

t

g(k)

q,q(k)

g

q,q(k)

t

t

IR singularities corresponds to unresolved partons and are extracted

isolating the regions of the tt̄+ (g/q/q̄) phase space where sik → 0, where:

sik = 2pi ·k = 2Eik
0(1− βi cos θik)

• k0 → 0 : soft singularities (both massless and massive particles);

• cos θik → 0: collinear singularities (massless particles only, βi = 0).



Soft and collinear singularities can be isolated thanks to the factorization

properties of |Areal
1 |2 and d(PS2+(g/q/q̄)) in the soft and collinear limits.

Consider ij → tt̄+ g . In the soft limit (Eg = k0 → 0):

d(PS2+g)
soft
−→ d(PS2)d(PSg) = d(PS2)

dd−1k

(2π)d−12k0

∑

|Areal
1 (ij → tt̄+ g)|2

soft
−→ (4παs)Φeik

∑

|A0|
2

where the eikonal factor Φeik contains the soft poles (sij = 2pi · pj):

Φeik ∝
∑

ij

(

sij
siksjk

−
m2

i

s2ik
−

m2
j

s2jk

)

⇓

dσ̂soft
ij ∝ d(PS2)

∫

soft

d(PSg)Φeik

∑

|A0|
2



Soft limit, a closer look . . .

p′=p+k
k

p

p′=p+k
k

p

Calculate An+1 using:

• incoming line:

· · ·
6 p′ +m

[(p′)2 −m2]
γµu(p)ǫ∗µ(k)

k→0
−→ · · ·

6 p+m

2p · k
γµu(p)ǫ∗µ(k) = −igsT

a p · ǫ
∗(k)

p · k
An

• outgoing line:

ū(p)γµ 6 p′ +m

[(p′)2 −m2]
ǫ∗µ(k) . . .

k→0
−→ ū(p)γµ 6 p+m

2p · k
ǫ∗µ(k) . . . = −igsT

a p · ǫ
∗(k)

p · k
An

When squaring An+1 the eikonal factor appears:

∑

|An+1|
2 = g2sCF

∣

∣

∣

∣

∣

∑

i

pi · ǫ
∗(k)

pi · k

∣

∣

∣

∣

∣

2
∑

|An|
2 = (4παs)Φeik

∑

|An|
2



In the collinear limit (i → i′g, p′i=zpi, k=(1− z)pi)

∑

|Areal
1 (ij → tt̄+ g)|2

collinear
−→ (4παs)

∑

|A0(i
′j → tt̄)|2

2Pii′(z)

z sik

d(PS2+g)(ij → tt̄)
collinear
−→ d(PS2)(i

′j → tt̄)zd(PSg)

(Pii′ → Altarelli-Parisi splitting functions)

⇓

dσ̂
hard/coll
ij ∝ d(PS2)

∫

coll

d(PSg)
∑

i

Pii′

sik

∑

|A0(i
′j → tt̄)|2

The idea is now to calculate analytically only the singular parts of σ̂real
ij ,

while integrating numerically over the regions of the final state phase space

that do not contain singularities. Even more so when we think of

calculating processes with several particles (some of which massive) in the

final state.



Collinear limit, a closer look . . .

p′=p+k
k

p

p′=p+k
k

p

Use collinear kinematics, imposing k2 = 0 (i.e. k2 = O(p4⊥)):

p′ =

(

zp,−p⊥, 0, zp+
p2⊥

2(1− z)p

)

k =

(

(1− z)p, p⊥, 0, (1− z)p−
p2⊥

2(1− z)p

)

and calculate |Areal
n+1|

2 using that (p′)2 = p2⊥/(1− z), to obtain:

|Areal
n+1|

2 collinear
−→ (4παs)

2Pqq(z)

z spk
|An|

2

where spk = 2p · k and Pqq is q → q Altarelli-Parisi splitting function.



IR singularities are extracted:

• by imposing suitable cuts on the phase space of the radiated parton:

phase space slicing (PSS) method.
→ PSS with two cutoffs:

B. W. Harris, J. F. Owens, PRD 65 (2002) 094032 (review paper);

→ PSS with one cutoff:

W. T. Giele, E. W. N. Glover, D. A. Kosower, PRD 46 (1992) 1980;

NPB 403 (1993) 633; S. Keller and E. Laenen, PRD 59 (1999) 114004.

• by using a subtraction method:
• S. Catani, M. H. Seymour, PLB 378 (1996) 287, NPB 485 (1997) 291 (dipole

subtraction);
• D. A. Kosower PRD 57 (1998) 5410, PRD 67 (2003) 116003, PRD 71 (2005)

045016 (antenna subtraction).

Remaining initial-state IR singularities are absorbed in the PDF’s

(mass factorization).



PSS: Two Cutoff Method (δs,δc):

dσ̂real
ij (ij → tt̄+ g) = dσ̂soft

ij + dσ̂
hard/coll
ij + dσ̂

hard/non−coll
ij

where

• dσ̂
soft
ij −→ Eg <

√
s
2 δs

• dσ̂
hard/coll
ij −→ Eg >

√
s
2 δs and (1− cos θik) < δc

are computed analytically to extract the IR singularities, while:

• dσ̂
hard/non−coll
ij −→ Eg >

√
s
2 δs and (1− cos θik) > δc

can be computed numerically, since is IR finite.

⇓

The dependence on the cutoffs needs to cancel in the physical cross section.



PSS: One Cutoff Method (smin):

dσ̂real
ij (ij → tt̄+ g) = dσ̂ir

ij + dσ̂hard
ij

where

• dσ̂ir
ij−→ sik < smin

is computed analytically to extract the IR singularities:

−→ cross all colored particles to final state;

−→ work with color ordered amplitudes: easier matching between soft and

collinear region;

−→ introduce crossing functions: to account for difference between initial state

and final state collinear singularities.

• dσ̂hard
ij −→ sig > smin

can be computed numerically, since IR finite.

⇓

The dependence on the cutoff needs to cancel in the physical cross section.



Consider e.g. ij → tt̄+ g:

dσ̂real
ij = d(PS4)d(PSg)

∑

|Areal
ijtt̄+g|

2 ,

where

Areal
ijtt̄+g =

∑

a,b,c
i 6=j 6=k

Aabc T
a T b T c .

T a → color matrices, Aabc → color ordered amplitudes.

The amplitude square is made of three terms:
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with very definite soft/collinear factorization properties.



Soft singularities −→ straightforward

How to disentangle soft vs collinear region of PS with one cutoff?

Collinear limit for ig → i′: sig → 0 (i=g1, g2)







pi = zp′i

pg = (1− z)p′i

Each Aabc (or linear combination of) proportional to (skisigsgj)
−1

collinear

region















sig < smin

ski > smin −→ zski′ > smin −→ z > z1 = smin

ski′

sgj > smin −→ (1− z)si′j > smin −→ z < 1− z2 = 1− smin

si′j

z1, 1− z2 −→ integration boundaries

How to match with dσ̂hard? Match each term in |Areal
ijtt̄+g|

2 separately.



Subtraction Method

Subtract the singular behavior without introducing cutoffs. Schematically:

dσ̂NLO

ij =
[

dσ̂real
ij − dσ̂sub

ij

]

ǫ→0
+
[

dσ̂virt
ij + dσ̂sub,CT

ij

]

ǫ→0

where

• dσ̂sub
ij has the same singular behavior as dσ̂real

ij at each phase space

point (in d dimensions);

• dσ̂sub
ij has to be analytically integrable over the singular one-parton

phase space in d dimensions, such that we can define the subtraction

“counterterm”:

dσ̂sub,CT
ij =

∫

d(PSg) dσ̂
sub
ij

In this way:

• [dσ̂real
ij − dσ̂sub

ij ] is integrable over the entire phase space, and the limit

ǫ → 0 can safely be taken;

• [dσ̂virt
ij + dσ̂sub,CT

ij ] is finite and integrable in d = 4 because (modulus

the IR singularities that are factored in the renormalized PDF’s)

dσ̂sub,CT
ij contains all the IR poles of dσ̂virt

ij .



Example: dσ̂sub
ij can be built using the so called dipole

formalism.
(S. Catani and M.H. Seymour, NPB 485 (1997) 291)

“Dipoles” −→ soft or collinear singular structures (dVdipole) defined by the

factorization of the real emission amplitude (→ see this lecture).

dσ̂sub
ij =

∑

dipoles

dσ̂LO

ij ⊗ dVdipole

dσ̂LO

ij −→ tree level cross-section.

such that:

dσ̂sub,CT
ij =

∫

d(PSg) dσ̂
sub
ij = dσ̂LO

ij ⊗
∑

dipoles

∫

d(PSg) dVdipole


