Towards a more accurate prediction of W + b jets with an automatized approach to one-loop calculations

Laura Reina

Loops and Legs in Quantum Field Theory Wernigerode, April 2012

Outline

- Motivations:
 - \triangleright W + b-jet and W + 2 b-jets (plus light jets): important QCD test;
 - ▷ they are also crucial backgrounds in Higgs searches;
 - ▷ the NLO cross sections for $pp, p\bar{p} \rightarrow Wb\bar{b}$ production still suffer from large systematic uncertainty:
 - \rightarrow contributes to both 1*b*-jet and 2*b*-jet signatures;
 - \rightarrow main origin: $qg \rightarrow Wb\bar{b}q$ channel opening at NLO;
 - \rightarrow more dramatic at the LHC in the 2*b*-jet signature;
 - \rightarrow less dramatic in the 1*b*-jet signature (with 5FNS resummation).
- Main QCD studies:
 - \triangleright Wbb at NLO, b massless/massive;
 - \triangleright Wb + jet: 4FNS and 5FNS at NLO;
 - \triangleright NLO $Wb\bar{b}$ interfaced with parton shower Monte Carlo programs;
 - ▷ $Wb\bar{b} + j$ at NLO, *b* massive: one-loop contributions:
 - \rightarrow meaning of adding this order of corrections;
 - \rightarrow main technical challenges and what they entailed;
 - \rightarrow ongoing and possible developments.

Motivations a challenging background

Associated production of SM Higgs with weak vector bosons

- $\longrightarrow \text{NNLO QCD corrections have been calculated}$ for the signal [O.Brien, A.Djouadi and R.Harlander, 2004] $\longrightarrow O(\alpha) EW corrections have been calculated for$
 - the signal [M.L.Ciccolini, S.Dittmaier and M.Kramer, 2003]
- \rightarrow Results for WH associated production, Spring 2012

W + b jets

Studied at NLO in QCD/measured in experiments:

- W + 2b jets $(m_b \neq 0)$:
 - Febres Cordero, L. R., Wackeroth, hep-ph/0606102, arXiv:0906.1923
 - Badger, Campbell, Ellis, arXiv:1011.6647 (with $W \rightarrow l\nu$)
 - Oleari, L. R., arXiv.1105.4488 \longrightarrow POWHEG
 - Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, arXiv:1106.6019 $\longrightarrow \mathrm{MC}@\mathrm{NLO}$
- W + 2 jets with at least one b jet:
 - Campbell, Ellis, Febres Cordero, Maltoni, L.R., Wackeroth, Willenbrock, arXiv:0809.3003
 - the CDF collaboration, arXiv:0909.1505,
 Campbell, Febres Cordero, L.R., arXiv:1001.3362, arXiv:1001.2954
 - the ATLAS collaboration, arXiv:1109.1470,
 Campbell, Caola, Febres Cordero, L.R., Wackeroth, arXiv:1107.3714
- W + 2b + jet:
 - L.R., Schutzmeier, arXiv:1110.4438 (one-loop corrections)

W + 2b jets@LHC: large theoretical uncertainty at NLO

(Febres Cordero, L.R., Wackeroth, arXiv:0906.1923)

- \longrightarrow NLO corrections very large, particularly for inclusive production;
- → large NLO scale-dependence (LO: 30%, NLO_{inc}: 50%, NLO_{exc}: 20%), induced by the opening of the $qg(\bar{q}g) \rightarrow Wb\bar{b} + q'(\bar{q}')$ channel;
- \longrightarrow theoretical uncertainty not only given by scale-dependence!

- W plus at least one b jet, some tension:
 - \rightarrow Comparison with CDF (arXiv:0909.1505):

 $\sigma_{b-jet}(W+b\,jets) \cdot Br(W \to l\nu)|_{CDF} = 2.74 \pm 0.27(\text{stat}) \pm 0.42(\text{syst}) \text{ pb}$ $\sigma_{b-jet}(W+b\,jets) \cdot Br(W \to l\nu)|_{theory} = 1.22 \pm 0.14 \text{ pb}$

 \rightarrow Comparison with ATLAS (arXiv:1109.1470):

More statistics available new results by Summer 2012

$Wb\bar{b} + j$ at NLO

challenges, results, future steps

with T. Schutzmeier

Overview

• One-loop QCD corrections to $qg \to Wb\bar{b} + q'$:

plus about 300 loop diagrams, keeping full m_b dependence.

- Together with analogous corrections to qq̄' → Wbb̄ + g (obtained by crossing), they represent a well-defined piece of the NNLO QCD corrections to pp, pp̄ → Wbb̄: the one-loop virtual corrections from 2 → 4 processes.
- They provide the $O(\alpha_s)$ virtual corrections for $pp, p\bar{p} \to W + 2b \text{ jets} + j$.
- In a fixed-flavor scheme, they also provide the $O(\alpha_s)$ virtual corrections for $pp, p\bar{p} \to W + b \text{ jet} + j$.

Approach

• Based on traditional Feynman diagrams evaluation

$$\Gamma = \operatorname{Re}\left\{\sum_{ij}\sum_{\operatorname{color}} C_i C_j^* \sum_{\operatorname{spin,pol}}\sum_n c_{in} \,\hat{\mathcal{M}}_n^{(1)} \hat{\mathcal{M}}_j^{(0)*}\right\}$$

- UV and IR divergences extracted in $d = 4 2\epsilon$ using dimensional regularization,
 - ▷ UV divergent QCD subdiagrams are standard: can be isolated and matched with a suitable choice of counterterms;
 - ▶ IR divergences' structure well known and matched exactly by corresponding real emission contributions.
- New techniques developed to
 - reduce diagram structure to small/minimal set of standard spinor structures using graph techniques;
 - combine different reduction methods to optimize calculation of numerically stable tensor integral coefficient.

- Each level of evaluation automatized within an overall interface (Python) that only takes as input the desired process:
 - ▷ diagram generated with a very modified version of QGRAPH;
 - algebraic manipulations to extract first level of SME and tensor structures done with FORM;
 - reduction of tensor integral coefficients and spinor structures use C++;
 - numerical stability checks use library of scalar integrals based on QCDLoop and LoopTools;
 - \triangleright amplitude square calculation uses C++ interface to facilitate
 - selection of terms (e.g. individual diagrams or groups of),
 - extraction of divergences,
 - extensive numerical checks,
 - $-\,$ connection with a phase space generator,
 - and more.

Reduction of spinor structures

spinor structures (standard matrix element or SME) \rightarrow oriented graphs:

- nodes \rightarrow spinor, gamma matrices, projectors, polarizations, \ldots
- links \rightarrow contraction of indices and direction.

oriented graphs \rightarrow stored as relations and graph operations that are automatically implemented over the entire structure of a diagram at once,

- algebraic relations (based on d=4 identities) translate into graph operations (e.g. shrinking of edges, exchange or addition of nodes, ...) and result into disconnected elementary graphs;
- ▶ number of final SME much smaller (from thousands to a a few hundreds);
- \triangleright coefficients of single elementary graphs collected via systematic labeling .

Reduction of tensor-integral coefficients

- reduce to standard pattern of momenta and masses;
- create list of dependences that are then reused every time the same pattern appears, including subdiagrams;
- choose evaluation order.

automated dependency creation

evaluation order determination

On-the-fly generation and evaluation of alternatives reduction methods if needed.

- presence of numerical instabilities detected from behavior of double and single pole parts (checked against analytical library);
- if detected, switch to different reduction method.

For $N \leq 4$ we implement:

- no instabilities: PV reduction
- if unstable:
 - PV in multiple precision (quadruple or double quadruple);
 - reduction with modified Cayley determinant (Denner and Dittmaier, arXiv:hep-ph/0509141);
 - expansion around small quantities (e.g. Gram or Cayley determinant) (Denner and Dittmaier, arXiv:hep-ph/0509141).

For N > 4 we implement:

 Gram determinant free (GDF) procedure (Diakonidis, Fleischer, Gluza, Kajda, Riemann, and Tausk, arXiv:0812,2134).

Moreover, if numerical instabilities arise when combining various terms at the amplitude square level, the entire calculation is switched to multiple precision.

Some checks

- Using the high precision set of points previously generated as reference points (Γ_{ref}), compute the square amplitude for the same set of points using two different strategies:
 - standard reduction of 5- and 6-point tensor coefficients,
 - GDF reduction of 5- and 6-point tensor integrals switches to multiple precision when needed.

- Moreover: reproduced results for several $2 \rightarrow 3$ processes (e.g. $W/Zb\bar{b}, \gamma t\bar{t})$, and $2 \rightarrow 4$ ($\bar{u}d \rightarrow d\bar{d}gW$ channel of W + 3j calculation). Also, results for $ug \rightarrow Wb\bar{b} + d$ checked with GoSam collaboration.

Some benchmarks

Benchmarks of the numerically stabilized method applied to various NLO amplitudes for the evaluation of $5 \cdot 10^4$ phase-space points.

Process	r_s	r_q	r_{dq}	$t_m/{ m ms}$	$t_s/{ m ms}$	$t_q/{ m ms}$	t_{dq}/ms	$t_q^{\rm full}/{ m ms}$
$q\overline{q} o \gamma t\overline{t}$	99.6%	0.4%	0	9.5	8.9	153	0	1069
$gg ightarrow \gamma t \overline{t}$	98.9%	1.1%	0	12.0	10.1	182	0	1972
$q\overline{q}' o W b\overline{b}$	99.7%	0.3%	0	10.9	10.4	167	0	1264
$q\overline{q} ightarrow Zb\overline{b}$	99.8%	0.1%	0.1%	17.7	14.4	217	3161	2290
$gg \to Z b \overline{b}$	98.3%	1.6%	0.1%	22.5	15.7	233	3314	2706
$\overline{u}d ightarrow d\overline{d}gW$	95.4%	3.6%	1.0%	90.3	37.5	306	4358	5503
$ug ightarrow b\overline{b}dW$	93.1%	5.6%	1.3%	95.4	29.7	311	3870	5192

The above numbers were obtained on an Intel i7 950 CPU at 3.07GHz.

Summary and Outlook

- Calculated $O(\alpha_s)$ virtual corrections to $Wb\bar{b} + j$ and Wb + j (in fixed-flavor scheme).
- This also provides a self-contained piece of NNLO virtual corrections to $Wb\overline{b}$.
- New automatized package developed (based on improved Feynman-diagram techniques) to calculate 2 → 3 and 2 → 4 processes with vector bosons and several massive particles.
- Effort now focused on:
 - \hookrightarrow documenting existing package, adding useful options or improving existing ones;
 - \hookrightarrow implementing interface to real corrections' generator;
 - \hookrightarrow studying impact of calculated QCD effects.