Vector boson production with b jets: from the Tevatron to the LHC

Laura Reina

Università di Roma III, 25 Marzo 2014

Outline

- V+HQ, Motivations:
 - \triangleright important test of QCD;
 - ▷ testing ground of cutting edge techniques in perturbative QFT;

$$\triangleright \ Vt\bar{t} \ (V=W/Z/\gamma):$$

- \rightarrow testing EW top-quark couplings;
- $\triangleright Vb\overline{b}, Vb, \text{ and } Vc\overline{c}, Vc \ (V = W/Z/\gamma):$
 - \rightarrow direct access to b and c intrinsic densities in nucleons;
 - $\rightarrow\,$ main background to several important SM and BSM signatures,
 - \triangleright WH/ZH associated production, $H \rightarrow b\bar{b}$;
 - ▶ single-top production;
 - ▷ several non-standard model signatures.
- Main focus: QCD studies for V + b jets $(V = W/Z/\gamma)$:
 - \rightarrow new study of $\gamma + b$ jets;
 - \rightarrow review and current developments in W/Z + b jets.
- Comparison with Tevatron and LHC data
- Outlook

Ex.: Higgs searches and New Physics searches

- → Higgs searches: $W/Z + b\bar{b}$ largest irreducible background in $VH, H \rightarrow b\bar{b}$ associated production (signal known very accurately).
- \rightarrow New physics searches: W/Z+b jets important irreducible background were largest deviations are expected.

What makes V + HQ special

- New mass scale (m_{HQ}) comes into play.
- b and c-quark production prone to large corrections induced by logarithmic dependence on large mass ratios (m_{HQ}/M_X) .
- Theoretical predictions may require resummation of large logarithmic corrections.
- Behavior of perturbative expansion depends on number of HQ jets required in the final state.
- Behavior of perturbative expansion may change drastically depending on energy scale or kinematic regime.

Detailed discussion of V + 2b and V + 1b next

V + 2b jets: only via the tree-level processes $\rightarrow q\bar{q}' \rightarrow Wb\bar{b}$

 $\rightarrow q\bar{q}, gg \rightarrow Zb\bar{b}/\gamma b\bar{b}$

and corresponding higher-order corrections.

V + 1b jet: still via the tree-level processes $(n_{lf} = 4 \rightarrow 4\text{FNS}, m_b \neq 0)$

 $\rightarrow q\bar{q}' \rightarrow Wb\bar{b}$ $\rightarrow q\bar{q}, gg \rightarrow Zb\bar{b}/\gamma b\bar{b}$

but also $(n_{lf} = 5 \rightarrow 5 \text{FNS}, m_b = 0),$

- $\rightarrow b\bar{q} \rightarrow Wb + q'$
- $\rightarrow bg \rightarrow Zb/\gamma b$

and corresponding higher-order corrections.

Different processes dominate in different kinematic regions and at different scales (relative to m_b). Why? \longrightarrow look at origin of *b*-initiated processes

Observe that:

 $\triangleright bg \rightarrow Zb/\gamma b$ is related to $gg \rightarrow Zb\overline{b}/\gamma b\overline{b}$,

by defining a purely perturbative *b*-quark density (from $g \to b\overline{b}$), e.g.

$$b(x,\mu) = \frac{\alpha_s}{2\pi} \ln \frac{\mu^2}{m_b^2} \int_x^1 \frac{dz}{z} P_{qg}(z) g\left(\frac{x}{z},\mu\right)$$

[expansion at first order of the RGE evolved $b(x, \mu)$]

Where:

- > potentially large logarithmic corrections arise from phase-space integration of untagged b quark;
- ▷ they can be resummed using RG techniques into $b(x, \mu)$;
- combination of processes requires subtraction terms to avoid double-counting.
- ... and yet:
 - fixed-order expansion of b-initiated processes does not match fixed-order calculation (missing non-log terms).
 - ▷ when should we make the transition $n_{lf} = 4 \rightarrow n_{lf} = 5$?
 - ▷ do we understand the interplay of $n_{lf} = 4$ and $n_{lf} = 5$ in different processes $(W + b \text{ jets vs } Z + b \text{ jets vs } \gamma + b \text{ jets})$?
 - ▷ do we understand the different energy regimes (Tevatron vs LHC)?
 - \triangleright is this picture correct? (intrinsic b?)

Only a thorough comparison with data using the most accurate theoretical predictions will tell us \rightarrow see results in this talk

W + b jets

Studied at NLO in QCD/measured in experiments:

- W + 2b jets $(m_b \neq 0)$:
 - Febres Cordero, L.R., Wackeroth, hep-ph/0606102, arXiv:0906.1923
 - Badger, Campbell, Ellis, arXiv:1011.6647 (with $W \rightarrow l\nu$)
 - Oleari, L.R., arXiv.1105.4488 \longrightarrow POWHEG-BOX
 - Frederix, et al., arXiv:1106.6019 \longrightarrow aMC@NLO
 - Höche, L.R. \longrightarrow SHERPA
 - the CMS collaboration, arXiv:1312.6608.
- W + 2b + jet:
 - L.R., Schutzmeier, arXiv:1110.4438 (one-loop corrections)
- W + 2 jets with at least one b jet:
 - Campbell, et al., arXiv:0809.3003, arXiv:1107.3714
 - the CDF collaboration, arXiv:0909.1505,
 - the D0 collaboration, arXiv:1210.0627
 - the ATLAS collaboration, arXiv:1109.1470, arXiv:1302.2929.

Z + b jets

Studied at NLO in QCD/measured in experiments :

- Z + 2b jets $(m_b \neq 0)$:
 - Febres Cordero, L.R., Wackeroth, arXiv:0806.0808, arXiv:0906.1923
 - Frederix, et al., arXiv:1106.6019 \longrightarrow aMC@NLO
 - the CMS collaboration, arXiv:1310.1349
- Z + 1b jet, Z + 2 jets with at least one b jet:
 - Campbell, Ellis, Maltoni, Willenbrock, hep-ph/0312024
 - Campbell, Ellis, Maltoni, Willenbrock, hep-ph/0510362
 - the CDF collaboration, hep-ex/0812.4458,
 - the D0 collaboration, arXiv:1301.2233
 - the ATLAS collaboration, arXiv:1109.1403
 - the CMS collaboration, arXiv:1402.1521

 $\gamma + b$ jets

Studied at NLO in QCD/measured in experiments :

- $\gamma + 2b$ jets $(m_b \neq 0)$:
 - Hartanto, L.R., arXiv:1312.2384
 - Frederix, et al., arXiv:1106.6019 (virtual γ) \longrightarrow aMC@NLO
- $\gamma + 1b$ jet, $\gamma + 2$ jets with at least one b jet:
 - Stavreva, Owens, arXiv:0901.3791 (5FNS)
 - Hartanto, L.R., arXiv:1312.2384 (4FNS)
 - the CDF collaboration, arXiv:1303.6136,
 - the D0 collaboration, arXiv:1203.5865.

V + 2b jets and V + 1b jet for $V = \gamma, Z$:

LO processes, depend on choice of 4FNS vs 5FNS:

Correspondently, at NLO:

- 1. $q\bar{q}, gg \to Vb\bar{b}$ at tree level and one loop (with $m_b \neq 0$);
- 2. $q\bar{q}, gg \to Vb\bar{b} + g$ and $gq(g\bar{q}) \to Vb\bar{b} + q(\bar{q})$ (with $m_b \neq 0$).
- 3. $bg \rightarrow Vb$ at tree level and one loop (with $m_b = 0$);
- 4. $bg \rightarrow Vb + g$, $bq \rightarrow Vb + q$ (with $m_b = 0$);

V + 2b jets: processes 1 + 2V + 1b jet: processes $3 + 4 + (1 + 2)_{LO}$ (5FNS) or $(1 + 2)_{NLO}$ (4FNS) Direct photon +b jet study

H. Hartanto, L.R., arXiv:1312.2384

- NLO 4FNS and 5FNS calculation
- Studied dependence on
 - \rightarrow dynamical-scale choice $(p_T(\gamma), H_T, \ldots),$
 - \rightarrow scale variation (μ_R and μ_F , $\mu_0/4 < \mu_{R,F} < 4\mu_0$),
 - $\rightarrow\,$ photon isolation prescription: fixed- vs smooth-cone isolation:
 - Fixed-cone: $\sum_{\in R_0} E_T(had) < E_T^{\max} + fragmt.$ functions

- Smooth-cone:
$$\sum_{i,R \leq R_0} E_T^i \theta(R - R_{i,\gamma}) < \epsilon E_T^{\gamma} \left(\frac{1 - \cos R}{1 - \cos R_0} \right)$$

(for $R_0 = 0.4, \epsilon = 1$).

- PDF: CT10nlonf4 (4FNS), CT10nlo (5FNS).
- Photon selection cuts:
 - Tevatron: $p_T(\gamma) > 30$ GeV, $|\eta(\gamma)| < 1$
 - LHC: $p_T(\gamma) > 25$ GeV, $|\eta(\gamma)| < 1.37$
- Jet selection cuts (used anti- k_T with R = 0.4):
 - Tevatron: $p_T(b, j) > 20$ GeV, $|\eta(b, j)| < 1.5$
 - LHC: $p_T(b, j) > 25$ GeV, $|\eta(b, j)| < 2.1$

<u>Ex.</u>: $\gamma + 2b$

Perturbative theoretical accuracy (μ_R and μ_F dependence, $\mu_0 = p_T(\gamma)$)

Understanding residual scale-dependence,

<u>Ex.</u>: $\gamma + 1b$, 4FNS

Perturbative theoretical accuracy (μ_R and μ_F dependence, $\mu_0 = p_T(\gamma)$)

Looking at individual contributions:

 $\gamma + 1b$, 4FNS vs 5FNS

Notice:

- \rightarrow overall compatibility within accuracy;
- \rightarrow difference between high and low $p_T(\gamma)$;
- \rightarrow difference between Tevatron and LHC.

$\gamma + 1b$: Comparison with experimental results, CDF and D0

- \rightarrow signature: γ plus at least one b jet $(\gamma + b + X)$
- \rightarrow adopted full match with experimental selection cuts
- \rightarrow used anti- k_T jet algorithm (R = 0.4) and fixed-cone photon isolation
- \rightarrow 5FNS: from Stavreva and Owens (arXiv:0901.3791)
- \rightarrow 4FNS: from our study (arXiv:1312.2384)
- \rightarrow L.H.S.: S&O setup
- \rightarrow R.H.S.: our setup

Z + 1b jet vs Z + 2b jets

New measurements from CMS (arXiV:1402.1521, arXiv:1310.1349)

Cross section	Measured	MADGRAPH	aMCATNLO	MCFM	MADGRAPH	aMCATNLO
		(5F)	(5F)	(parton level)	(4F)	(4F)
$\sigma_{\rm Z+1b} \ ({\rm pb})$	$3.52 \pm 0.02 \pm 0.20$	3.66 ± 0.22	$3.70^{+0.23}_{-0.26}$	$3.03\substack{+0.30 \\ -0.36}$	$3.11\substack{+0.47\\-0.81}$	$2.36_{-0.37}^{+0.47}$
$\sigma_{\rm Z+2b}~({\rm pb})$	$0.36 \pm 0.01 \pm 0.07$	0.37 ± 0.07	$0.29\substack{+0.04 \\ -0.04}$	$0.29\substack{+0.04 \\ -0.04}$	$0.38\substack{+0.06\\-0.10}$	$0.35\substack{+0.08 \\ -0.06}$
$\sigma_{\rm Z+b}~({\rm pb})$	$3.88 \pm 0.02 \pm 0.22$	4.03 ± 0.24	$3.99\substack{+0.25\\-0.29}$	$3.23_{-0.40}^{+0.34}$	$3.49\substack{+0.52\\-0.91}$	$2.71_{-0.41}^{+0.52}$
$\sigma_{\rm Z+b/Z+j}$ (%)	$5.15 \pm 0.03 \pm 0.25$	5.35 ± 0.11	$5.38^{+0.34}_{-0.39}$	$4.75_{-0.27}^{+0.24}$	$4.63^{+0.69}_{-1.21}$	$3.65\substack{+0.70 \\ -0.55}$

Interesting measurement of *b*-hadron azimuthal correlation

seems to point to resummation of large terms in $b\overline{b}$ collinear region (\hookrightarrow Mangano and Nason, PLB 285 (1992) 160, HQ multiplicity in gluon jets)

W + 1b jet vs W + 2b jets

One or two LO processes, depending on choice of 4FNS vs 5FNS:

+ $O(\alpha_s)$ corrections

Correspondently, at NLO:

- 1. $q\bar{q}' \to Wb\bar{b}$ at tree level and one loop $(m_b \neq 0)$
- 2. $q\bar{q}' \to W b\bar{b}g$ at tree level $(m_b \neq 0)$
- 3. $bq \to Wbq'$ at tree level and one loop $(m_b = 0)$
- 4. $bq \to Wbq'g$ and $bg \to Wbq'\bar{q}$ at tree level $(m_b = 0)$
- 5. $gq \to Wb\bar{b}q'$ at tree level $(m_b \neq 0) \to$ avoiding double counting:
- \triangleright W + 2b jets: processes 1 + 2 + 5
- \triangleright W + 2 jets with at least one b jet: processes $1 + \cdots + 5$.

- need to keep $m_b \neq 0$ for final state *b* quarks (one *b* quark has low p_T): first consistent NLO 5FNS calculation.
- four signatures studied: exclusive/inclusive, with single and double-b jets,
 - \rightarrow Wb exclusive: Wb only;
 - $\rightarrow W(b\bar{b})$ exclusive: $W(b\bar{b})$ only;
 - \rightarrow Wb inclusive: Wb, Wb + j, Wb \overline{b} ;
 - $\rightarrow W(b\bar{b})$ inclusive: $W(b\bar{b})$ and $W(b\bar{b}) + j$.
- calculate σ_{event} and $\sigma_{\text{b-jet}}$ where

$$\sigma_{b-\text{jet}} = \sigma_{\text{event}}(Wb \text{ incl.}) + \sigma_{\text{event}}(Wb\bar{b}) + \sigma_{\text{event}}(W(bb) \text{ incl.})$$
$$= \sigma_{1j+2j} + \sigma_{\text{event}}(Wb\bar{b})$$

- overall improved scale dependence: NLO corrections to $gq \rightarrow Wb\bar{b}q'$ partially included in 5FNS
- Compared to CDF and D0 measurements (W + 1b)
- Compared to ATLAS and CMS measurements (W + 1b and W + 2b)

Comparison with Tevatron measurements

CDF (arXiv:0909.1505):

 $\sigma_{\rm b-jet}(W + b\,{\rm jets}) \cdot Br(W \rightarrow l\nu) = 2.74 \pm 0.27({\rm stat}) \pm 0.42({\rm syst}) \,\,{\rm pb}$

From our W + 1b jet calculation (arXiv:1001.3362, arXiv:1001.2954):

 $\sigma_{\rm b-jet}(W + b \, \text{jets}) \cdot Br(W \to l\nu) = 1.22 \pm 0.14 \text{ pb}$

For comparison: Badger, Campbell, Ellis: $0.913 < \sigma_{b-jet} \cdot Br < 1.389$ pb ALPGEN prediction: 0.78 pb PYTHIA prediction: 1.10 pb whereas:

D0 (arXiv:1210.0627):

 $\sigma(W(\rightarrow l\nu) + b + X) = 1.05 \pm 0.12(\text{stat} + \text{syst}) \text{ pb}$

MCFM: $\sigma(W(\to l\nu) + b + X) = 1.34^{+0.41}_{-0.34}$ (syst) pb

Comparison with ATLAS and CMS

- ATLAS and CMS complementary measurements: W + b + j vs W + 2b.
- ATLAS consistent with NLO QCD calculations within 1.5 σ .
- CMS consistent with NLO QCD predictions: CMS (W + 2b jets): $0.53 \pm 0.05 \text{ (stat)} \pm 0.09 \text{ (syst)} \pm 0.06 \text{ (theo) pb}$ MCFM (W + 2b jets): $0.52 \pm 0.03 \text{ pb}$
- Only partial use of NLO parton shower MC \rightarrow fully available for W + 2b jets. Better tool for distributions.

Wbb implemented in POWHEG and aMC@NLO, including $W \rightarrow l\nu_l$ decay.

- used in ATLAS analysis to estimate showering and hadronization uncertainties: $\leq 10 - 20\%$ (although $bq \rightarrow bq'W$ not yet implemented).
- Could be fully used in CMS analysis.

Outlook

- We seem to be converging towards a more definite understanding of V + b jets at hadron collider.
- Experimental precision now comparable to theoretical accuracy.
- Realistic phenomenological analyses need to embed NLO calculations into NLO parton-shower Monte Carlos:

 $\rightarrow~V+1b$ can be tricky \rightarrow need massive b in initial state.

- V + c jets need to be systematically studied.
- Possible to develop a precision program for HQ PDF from high-energy data.
 - $\rightarrow\,$ NNLO QCD need to be included.
 - $\rightarrow\,$ First order of EW need to be included.