QCD@LHC: challenges and opportunities in heavy flavor production

Laura Reina

Anticipating Physics at the LHC, KITP, June 2008

- The Large Hadron Collider (LHC) will test new ground and answer some of the fundamental open questions of Particle Physics:

 —> Electroweak (EW) symmetry breaking: Higgs mechanism?

 New Physics (NP) in the TeV range?
- The incredible physics potential of the LHC relies on our ability of providing very accurate QCD predictions:
 - \longrightarrow Discovery: precise prediction of signals/backgrounds;
 - \longrightarrow <u>Identification</u>: precise extraction of parameters ($\alpha_s, m_t, M_H, y_{t,b}, M_X, y_X, \ldots$);
 - \longrightarrow <u>Precision</u>: $\sigma_{W/Z}$ as parton luminosity monitors (PDF's), ...
- Heavy Quark production w/o associated particles crucial to control:
 - \longrightarrow top/bottom-quark properties;

 \longrightarrow . . .

 \longrightarrow signatures involving hard (b)-jets, multi-leptons and missing E_T (background to new physics signatures).

Think of: $t\bar{t}, t\bar{t} + H, b\bar{b} + H, b\bar{b} + W/Z, t\bar{t} + W/Z, t\bar{t}b\bar{b}, t\bar{t}WW/ZZ, \ldots$

Outline

- Overview of precision QCD for the LHC (\rightarrow see Zvi Bern's talk).
- Focusing on Heavy Quark physics:
 - \longrightarrow toward a precise prediction of $Q\bar{Q}$ production;
 - \longrightarrow heavy quark production with weak gauge bosons: $Wb\bar{b}, Zb\bar{b}$;
 - \longrightarrow heavy quark production with Higgs bosons: $Ht\bar{t}$, $Hb\bar{b}$;

physical impact, theoretical progress and perspectives.

• Conclusions and outlook

State of the art of QCD calculations for hadronic processes

Relative order	$2 \rightarrow 1$	$2 \rightarrow 2$	$2 \rightarrow 3$	$2 \rightarrow 4$	$2 \rightarrow 5$	$2 \rightarrow 6$
1	LO					
α_s	NLO	LO				
$lpha_s^2$	NNLO	NLO	LO			
$lpha_s^3$		NNLO	NLO	LO		
$lpha_s^4$			NNLO	NLO	LO	
$lpha_s^5$				NNLO	NLO	LO

⁽from N. Glover)

Green light \longrightarrow Done! Red light \longrightarrow Still work in progress!

NLO: V + 2j (V = Z, W), $V + b\bar{b}/t\bar{t}$, VV + j, VVV, H + 2j, $Ht\bar{t}/b\bar{b}$, $t\bar{t} + j$, ...

NNLO: recent progress in $2 \to 2$ (Czakon, Mitov, Moch: $q\bar{q}, gg \to Q\bar{Q}$ at $O(m_Q^2/s)$ (07-08), Chachamis, Czakon: $q\bar{q} \to W^+W^-$ at $O(m_W^2/s)$ (08)) (plus: NNLO splitting functions (Moch, Vermaseren, Vogt (04))).

Why pushing the Loop Order ...

- Stability and predictivity of theoretical results, since less sensitivity to unphysical renormalization/factorization scales. First reliable normalization of total cross-sections and distributions. Crucial for:
 - \longrightarrow precision measurements $(M_W, m_t, M_H, y_{b,t}, \ldots);$
 - \longrightarrow searches of new physics (precise modelling of signal and background);
 - \longrightarrow reducing systematic errors in selection/analysis of data.
- Physics richness: more channels and more partons in final state, i.e. more structure to better model (in perturbative region):
 - \longrightarrow differential cross-sections, exclusive observables;
 - \longrightarrow jet formation/merging and hadronization;
 - \longrightarrow initial state radiation.
- First step towards matching with algorithms that resum particular sets of large corrections in the perturbative expansion: resummed calculations, parton shower Monte Carlo programs.

Main challenges ...

- Multiplicity and Massiveness of final state: complex events leads to complex calculations. For a $2 \rightarrow N$ process one needs:
 - \longrightarrow calculation of the 2 \rightarrow N + 1 (NLO) or 2 \rightarrow N + 2 real corrections;
 - \longrightarrow calculation of the 1-loop (NLO) or 2-loop (NNLO) $2 \rightarrow N$ virtual corrections;
 - \longrightarrow explicit cancellation of IR divergences (UV-cancellation is standard).
- Flexibility of NLO/NNLO calculations via Automation:
 - \longrightarrow algorithms suitable for automation are more efficient and force the adoption of standards;
 - \longrightarrow faster response to experimental needs (think to the impact of projects like MCFM).
- Matching to Parton Shower Monte Carlos.
 - \longrightarrow MC@NLO (Frixione, Webber)
 - \longrightarrow POWHEG (Nason)

- NLO: challenges have largely been faced and enormous progress has been made. From Zvi Bern's talk:
 - $\rightarrow\,$ traditional approach (FD's) becomes impracticable at high multiplicity;
 - \rightarrow new techniques based on unitarity methods and recursion relations offers a powerful and promising alternative, particularly suited for automation;
 - $\rightarrow\,$ interface to parton shower well advanced.
- When is NLO not enough?
 - \rightarrow When NLO corrections are large, to tests the convergence of the perturbative expansion. This may happen when:
 - > processes involve multiple scales, leading to large logarithms of the ratio(s) of scales;
 - ▷ new parton level subprocesses first appear at NLO;
 - \triangleright new dynamics first appear at NLO;
 - ▷ ...
 - \rightarrow When truly high precision is needed (very often the case!).
 - \rightarrow When a really reliable error estimate is needed.

<u>Ex. 1</u>: $gg \rightarrow H$ production at the Tevatron and LHC

Harlander, Kilgore (03)

Anastasiou, Melnikov, Petriello (03)

- dominant production mode in association with $H \to \gamma \gamma$ or $H \to WW$ or $H \to ZZ$;
- dominated by soft dynamics: effective ggH vertex can be used $(3 \rightarrow 2\text{-loop})$;
- perturbative convergence $LO \rightarrow NLO (70\%) \rightarrow NNLO (30\%)$: residual 10% theoretical uncertainty.

Inclusive cross section, resum effects of soft radiation:

large $q_T \xrightarrow{q_T > M_H}$ perturbative expansion in $\alpha_s(\mu)$

small $q_T \xrightarrow{q_T \ll M_H}$ need to resum large $\ln(M_H^2/q_T^2)$

Bozzi, Catani, de Florian, Grazzini (04-08)

Exclusive NNLO results: e.g. $gg \rightarrow H \rightarrow \gamma\gamma, WW, ZZ$ Extension of (IR safe) subtraction method to NNLO:

- \longrightarrow HNNLO (Catani, Grazzini)
- \longrightarrow FEHiP (Anastasiou, Melnikov, Petriello)

<u>Ex. 2</u>: W/Z production at the Tevatron and LHC.

Anastasiou, Dixon, Melnikov, Petriello (03)

Rapidity distributions of W and Z boson calculated at NNLO:

- W/Z production processes are standard candles at hadron colliders.
- Testing NNLO PDF's: parton-parton luminosity monitor, detector calibration (NNLO: 1% residual theoretical uncertainty).

<u>Ex. 3</u>: QQ production at the Tevatron and LHC

• NNLO: both $q\bar{q} \to Q\bar{Q}$ and $gg \to Q\bar{Q}$ channels calculated at $O(m_Q^2/s)$. Neglected terms may be large for $t\bar{t}$ production (\to work in progress)

Czakon, Mitov, Moch (07-08)

• NLL-NLO: resumming soft threshold corrections $\sigma_{t\bar{t}}^{NLO+NLL}(m_t = 171 \text{ GeV}, \text{CTEQ6.5}) = 908^{+82(9\%)}_{-85(9.3\%)}(\text{scales})^{+30(3.3\%)}_{-29(3.2\%)}(\text{PDFs}) \text{ pb}$ $\sigma_{t\bar{t}}^{NLO+NLL}(m_t = 171 \text{ GeV}, \text{MSTW2006nnlo}) = 961^{+89(9.2\%)}_{-91(9.4\%)}(\text{scales})^{+11(1.1\%)}_{-12(1.2\%)}(\text{PDFs}) \text{ pb}$

Cacciari, Frixione, Mangano, Nason Ridolfi (08)

• NNLO_{approx}: NNLL truncated at $O(\alpha_s^4) \rightarrow$ exact NLO plus exact 2-loop threshold logarithms and scale dependence.

Moch,Uwer (08) Kidonakis,Vogt (08)

At the LHC:

Moch, Uwer (08)

- \rightarrow theoretical precision: 4 6% (possible indirect determination of m_t);
- $\longrightarrow t\bar{t}$ production additional calibration process for parton luminosity.

$Q\bar{Q}$ associated production of with a Higgs boson

- Motivations
 - ▷ $Ht\bar{t}$: important channel when $H \to \gamma\gamma \ (H \to b\bar{b}?);$
 - \triangleright *Htt*: instrumental to Higgs couplings determination;
 - \triangleright $Hb\bar{b}$: direct evidence of new physics.
- Interesting aspects of the NLO calculation.
- Results.

(in collaboration with S.Dawson, C.B.Jackson, L.Orr, D.Wackeroth)

$pp \rightarrow t\bar{t}H$: unique direct measurement of top Yukawa coupling

Probably not a discovery mode, but crucial in the Higgs coupling game.

 \leftarrow mostly 200 fb⁻¹

• Below 130-140 GeV $gg \rightarrow H, H \rightarrow \gamma\gamma, WW, ZZ$ $qq \rightarrow qqH, H \rightarrow \gamma\gamma, WW, ZZ, \tau\tau$ $\boxed{q\bar{q}, gg \rightarrow t\bar{t}H, H \rightarrow b\bar{b}, \tau\tau}$

• Above 130-140 GeV

$$gg \rightarrow H, H \rightarrow WW, ZZ$$

 $qq \rightarrow qqH, H \rightarrow \gamma\gamma, WW, ZZ$
 $\boxed{q\bar{q}, gg \rightarrow t\bar{t}H, H \rightarrow WW}$

ttH : F.Maltoni, D.Rainwater, S.Willenbrock, A.Belyaev, L.R.

M.Dührssen, S.Heinemeyer, H.Logan, D.Rainwater, G.Weiglein, D.Zeppenfeld (04)

$p\bar{p}, pp \rightarrow b\bar{b}H$ important as a signal of new physics

Example: in the MSSM the bottom-quark Yukawa coupling can be enhanced with respect to the Standard Model:

$$g_{b\bar{b}h^{0},H^{0}}^{MSSM} = \frac{(-\sin\alpha,\cos\alpha)}{\cos\beta} g_{b\bar{b}H} \text{ and } g_{b\bar{b}A^{0}}^{MSSM} = \tan\beta \ g_{b\bar{b}H}$$

where $g_{b\bar{b}H} = m_{b}/v \simeq 0.02$ (Standard Model) and $\tan\beta = v_{1}/v_{2}$ (MSSM).
Tevatron LHC

M.Carena and H.Haber

Tevatron searches: D \emptyset Run II data with 3 *b*-tagged events (PRL 95 (2005) 151801)

Significant region of the MSSM parameter space can be excluded

LHC, $pp \to t\bar{t}H$: NLO cross section

Dawson, Jackson, Orr, L.R., Wackeroth

- \longrightarrow Fully massive 2 \rightarrow 3 calculation: testing the limit of FD's approach (pentagon diagrams with massive particles).
- \longrightarrow Independent calculation: Beenakker et al., full agreement.
- \longrightarrow Theoretical uncertainty reduced to about 15%
- → Several crucial backgrounds: $t\bar{t} + j$ (NLO, Dittmaier, Uwer, Weinzierl), $t\bar{t}b\bar{b}$, $t\bar{t} + 2j$, $VV + b\bar{b}$.

$p\bar{p}, pp \rightarrow b\bar{b}H$: exclusive vs inclusive cross section

- b-quarks identification requires tagging $(p_T^b \text{ and } \eta^b \text{ cuts})$: <u>exclusive</u> (1 b-,2 b-tags) vs <u>inclusive</u> (1 b-,0 b-tags) cross section.
- Exclusive modes have smaller cross section, but also smaller background and they measure the bottom-quark Yukawa coupling unambiguously.
- Inclusive modes enhanced by large collinear $\ln(\mu_H^2/m_b^2)$ arising in the PS integration of untagged *b*-quarks in $gg \to b\bar{b}H$

They can be resummed by introducing a *b*-quark PDF:

$$b(x,\mu) = \frac{\alpha_s(\mu)}{2\pi} \log\left(\frac{\mu^2}{m_b^2}\right) \int_x^1 \frac{dy}{y} P_{qg}\left(\frac{x}{y}\right) g(y,\mu)$$

- Semi-inclusive and inclusive cross sections: 2 approaches
 - \longrightarrow Use $q\bar{q}, gg \rightarrow b\bar{b}h$ (at NLO) \longrightarrow 4FNS

imposing tagging cuts on only one or no final state b quarks.

 \longrightarrow Use *b*-quark PDF, resumming the large collinear logs \longrightarrow 5FNS

Perturbative series ordered in Leading and SubLeading powers of $\alpha_s \ln(\mu_H^2/m_b^2)$.

- \longrightarrow Expect consistence at higher order when comparing $q\bar{q}, gg \rightarrow b\bar{b}H$ (NLO) to
 - $\triangleright \ b\overline{b} \rightarrow H \ (NNLO) \ (no \ b-tag)$

(R.Harlander, W.Kilgore; D.Dicus, T.Stelzer, Z.Sullivan, S.Willenbrock)

 $\triangleright bg \rightarrow bH$ (NLO) (one *b*-tag)

(J.Campbell, R.K.Ellis, F.Maltoni, S.Willenbrock)

Inclusive cross sections in the MSSM: 4FNS vs 5FNS

Dawson, Jackson, L.R., Wackeroth

$Q\bar{Q}$ associated production of with weak vector bosons

- Motivations:
 - \triangleright $W/Zb\bar{b}$: main background to W/ZH production;
 - \triangleright Wb \overline{b} : main background to single-top production;
 - \triangleright Wb \overline{b} : background to $t\overline{t}$ production;
 - ▷ $Zb\bar{b}$: background to beyond the SM discoveries: $(H, A)b\bar{b}, \ldots$;
 - \triangleright access to: *b*-quark PDF, b-tagging studies, ...
 - \triangleright $Zt\bar{t}$: direct measurement of *t*-quark weak couplings;
 - ▷ $Zt\bar{t}$: background to new physics signatures (ex.: tri-lepton events).
- NLO 2 \rightarrow 3 calculation with $m_Q \neq 0$: interesting test of new unitarity methods.
- Results.

(in collaboration with F. Febres Cordero, and D. Wackeroth)

Associated production of SM Higgs with weak vector bosons

- $\longrightarrow \text{NNLO QCD corrections have been calculated}$ for the signal [O.Brien, A.Djouadi and R.Harlander, 2004] $\longrightarrow O(\alpha) \text{ EW corrections have been calculated for}$ the signal [M.L.Ciccolini, S.Dittmaier and M.Kramer, 2003]
- \rightarrow Results for WH associated production, August 2007

 \rightarrow Results for ZH associated production, August 2007

SM Single-Top production

- NLO QCD corrections have been thoroughly studied [T.Stelzer, Z.Sullivan and S.Willenbrock, 1998; B.W.Harris, E.Laenen, L.Phaf, Z.Sullivan and S.Weinzierl, 2002; . . .]
- NLO EW corrections have been calculated for the (SM and MSSM) signal [M.Beccaria, G.Macorini,

 \rightarrow CDF data sample, February 2008

pb

pb

pb

15

[pb]

F.M.Renard and C.Verzegnassi, 2006]

Wbb/Zbb production at NLO, some history ...

 $\longrightarrow V \longrightarrow 4 \text{ partons (1-loop massless amplitudes) (Bern, Dixon, Kosower (97))}$ $\longrightarrow p\bar{p}, pp \rightarrow Vb\bar{b} \text{ (at NLO, 4FNS, } m_b = 0\text{) (Campbell, Ellis (99))}$ $\longrightarrow p\bar{p}, pp \rightarrow Vb + j \text{ (at NLO, 5FNS) (Campbell, Ellis, Maltoni, Willenbrock}$ (05,07)) $\longrightarrow p\bar{p}, pp \rightarrow Wb\bar{b} \text{ (at NLO, 4FNS, } m_i \neq 0\text{) (Febres Cordere, L.B., Wackereth)}$

 $\longrightarrow p\bar{p}, pp \rightarrow Wb\bar{b}$ (at NLO, 4FNS, $m_b \neq 0$) (Febres Cordero, L.R., Wackeroth (06))

 $\longrightarrow p\bar{p}, pp \to Zb\bar{b} \text{ (at NLO, 4FNS, } m_b \neq 0 \text{) (Febres Cordero, L.R., Wackeroth (08))}$ $\longrightarrow p\bar{p}, pp \to Wb \text{ (at NLO, 5FNS) (Campbell, Ellis, Febres Cordero, Maltoni, L.R., Wackeroth (in progress))}$

$Wb\bar{b}/Zb\bar{b}$ production with full m_b effects

LO Feynman diagrams:

Subprocesses at LO: $\longrightarrow Wb\bar{b}: q\bar{q}' \to Wb\bar{b}$ $\longrightarrow Zb\bar{b}: q\bar{q} \to Zb\bar{b}$ and $gg \to Zb\bar{b}$

- ī

NLO at a glance: the $gg \rightarrow Zb\overline{b}$ virtual diagrams.

 \longrightarrow Counting: 8 diagrams at LO - ~100 at NLO - 12 pentagons

Checking boxes and pentagons using unitarity methods. The one-loop amplitude can be written as (see Zvi Bern's talk)

$$\mathcal{M} = \sum_{i} d_{i} I_{4}^{i} + \sum_{i} c_{i} I_{3}^{i} + \sum_{i} b_{i} I_{2}^{i} + \sum_{i} a_{i} I_{1}^{i}$$

 \longrightarrow tadpoles, bubbles and vertices are easy in FD's language;

 \longrightarrow boxes and pentagons are the real hurdle (tensor integrals up to rank 4)

\Downarrow

 I_4^i scalar 4-point functions derive from box and pentagons diagrams. Calculating d_i with unitarity methods is a powerful check!

easy using quadrupole cuts!

Britto,Cachazo,Feng Bern,Dixon,Kosower

Scale dependence and theoretical uncertainty at NLO

 $[\]rightarrow$ Bands obtained by varying both μ_R and μ_F between $\mu_0/2$ and $4\mu_0$ (with $\mu_0 = m_b + M_V/2$ (V = W, Z)).

- LO uncertainty $\sim 40\%$.
- Inclusive NLO uncertainty $\sim 20\%$.
- Exclusive NLO uncertainty $\sim 10\%$.

$Zb\overline{b}$, scale dependence: LO vs NLO and massless vs massive

(arXiv:0806.0808)

$Zb\overline{b}$: $m_{b\overline{b}}$ distributions, LO vs NLO

(arXiv:0806.0808)

Zbb: $m_{b\bar{b}}$ distributions, massive vs massless

(arXiv:0806.0808)

Scale dependence and theoretical uncertainty at NLO

 $Wb\bar{b}$: LHC, <u>exclusive</u> (preliminary!)

Curves obtained by varying both $\mu_R = \mu_F$ between $\mu_0/2$ and $4\mu_0$ (with $\mu_0 = m_b + M_V / 2 \ (V = W, Z)).$

- LO uncertainty $\sim 40\%$.
- Inclusive NLO uncertainty $\sim 20\%$.
- Exclusive NLO uncertainty $\sim 10\%$.

 $Zt\bar{t}$: probing the top-quark electroweak properties and background to new physics (SUSY tri-lepton signatures)

Lazopoulos, McElmurry, Melnikov, Petriello (08)

- \rightarrow very reduced scale dependence, about 11%;
- \rightarrow large NLO corrections, minor impact on p_T^Z -distribution shape;
- \rightarrow factor of 1.5-2 improvement with respect to LO analysis of couplings;
- \rightarrow fully numerical calculation of one-loop matrix elements via sector decomposition and contour deformation.

Conclusions and Outlook

- Heavy quark production $(Q\bar{Q})$ and associated heavy quark production $(Q\bar{Q} + H, Q\bar{Q} + W/Z)$ play a fundamental role in the physics scenario of the LHC:
 - \rightarrow precision studies (m_t and parton luminosity from $Q\bar{Q}$);
 - \longrightarrow signal of new physics: $t\bar{t}H$, $b\bar{b}H$;
 - \longrightarrow background to new physics signals: $b\bar{b}W$, $b\bar{b}Z$.
 - \longrightarrow test ground of QCD (2 \rightarrow 2 at NNLO, 2 \rightarrow 3 at NLO);
 - \longrightarrow . . .
- NNLO (approximate) calculation of $Q\bar{Q}$ production reduces the theoretical uncertainty to precision levels, awaiting a complete NNLO calculation.
- Fully massive NLO calculation of $Wb\bar{b}$ and $Zb\bar{b}$ allows better control of a major background over full kinematic range.
- Combined $Vb\bar{b}$ and Vb + j NLO calculation under construction: looking forward to explaining existing discrepancy between data and existing Monte Carlos (MCFM, Pythia, Herwig).