Higgs Boson Physics, Part II

Laura Reina

TASI 2004, Boulder

Outline of Part II

- What do we know about the Standard Model Higgs boson?
 - \longrightarrow indirect bounds on M_H from the theoretical consistency of the Standard Model.
 - \longrightarrow indirect bounds from precision fits of electroweak physics observables.
 - \longrightarrow direct bounds on M_H from experimental searches at LEP II.
- The Higgs boson sector of the MSSM
 - \longrightarrow General structure.
 - \longrightarrow Higgs boson couplings to the SM gauge bosons.
 - \longrightarrow Higgs boson couplings to the SM fermions.
 - \longrightarrow Higgs boson decay branching ratios.
 - \longrightarrow direct bounds on M_h - M_A from experimental searches at LEP II.

Some References for Part II

- Theory and Phenomenology of the Higgs boson(s):
 - ▷ The Higgs Hunter Guide,
 - J. Gunion, H.E. Haber, G. Kane, and S. Dawson
 - \triangleright Introduction to the physics of Higgs bosons,
 - S. Dawson, TASI Lectures 1994, hep-ph/9411325
 - ▷ Introduction to electroweak symmetry breaking,
 - S. Dawson, hep-ph/9901280
 - Higgs Boson Theory and Phenomenology,
 M. Carena and H.E. Haber, hep-ph/0208209
- The Minimal Supersymmetric Standard Model:

 The Quantum Theory of Fields, V. III, S. Weinberg

Theoretical constraints on M_H in the Standard Model

SM as an effective theory valid up to a scale Λ . The Higgs sector of the SM actually contains two unknowns: M_H and Λ .

Bounds given by:

- \longrightarrow unitarity
- $\longrightarrow triviality$
- \longrightarrow vacuum stability
- \longrightarrow EW precision measurements
- \longrightarrow fine tuning

 $M_H^2 = 2\lambda v^2 \longrightarrow M_H$ determines the weak/strong coupling behavior of the theory, i.e. the limit of validity of the perturbative approach.

Unitarity: longitudinal gauge boson scattering cross section at high energy grows with M_H .

Electroweak Equivalence Theorem: in the high energy limit $(s \gg M_V^2)$

$$\mathcal{A}(V_L^1 \dots V_L^n \to V_L^1 \dots V_L^m) = (i)^n (-i)^m \mathcal{A}(\omega^1 \dots \omega^n \to \omega^1 \dots \omega^m) + O\left(\frac{M_V^2}{s}\right)$$

 $(V_L^i =$ longitudinal weak gauge boson; $\omega^i =$ associated Goldstone boson).

Example: $W_L^+ W_L^- \to W_L^+ W_L^-$

$$\mathcal{A}(W_L^+ W_L^- \to W_L^+ W_L^-) \sim -\frac{1}{v^2} \left(-s - t + \frac{s^2}{s - M_H^2} + \frac{t^2}{t - M_H^2} \right)$$
$$\mathcal{A}(\omega^+ \omega^- \to \omega^+ \omega^-) = -\frac{M_H^2}{v^2} \left(\frac{s}{s - M_H^2} + \frac{t}{t - M_H^2} \right)$$
$$\Downarrow$$

$$\mathcal{A}(W_L^+ W_L^- \to W_L^+ W_L^-) = \mathcal{A}(\omega^+ \omega^- \to \omega^+ \omega^-) + O\left(\frac{M_W^2}{s}\right)$$

Using partial wave decomposition:

$$\mathcal{A} = 16\pi \sum_{l=0}^{\infty} (2l+1)P_l(\cos\theta)a_l$$

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |\mathcal{A}^2| \longrightarrow \sigma = \frac{16\pi}{s} \sum_{l=0}^{\infty} (2l+1)|a_l|^2 = \frac{1}{s} \operatorname{Im} \left[\mathcal{A}(\theta=0)\right]$$

$$\Downarrow$$

$$[a_l|^2 = \operatorname{Im}(a_l) \longrightarrow \left[|\operatorname{Re}(a_l)| \le \frac{1}{2}\right]$$

Most constraining condition for $W_L^+ W_L^- \to W_L^+ W_L^-$ from

$$a_{0}(\omega^{+}\omega^{-} \to \omega^{+}\omega^{-}) = -\frac{M_{H}^{2}}{16\pi v^{2}} \left[2 + \frac{M_{H}^{2}}{s - M_{H}^{2}} - \frac{M_{H}^{2}}{s} \log\left(1 + \frac{s}{M_{H}^{2}}\right) \right) \stackrel{s \gg M_{H}^{2}}{\longrightarrow} -\frac{M_{H}^{2}}{8\pi v^{2}} \left| \operatorname{Re}(a_{0}) \right| < \frac{1}{2} \longrightarrow M_{H} < 870 \text{ GeV}$$

Best constraint from coupled channels $(2W_L^+W_L^- + Z_LZ_L)$:

$$a_0 \xrightarrow{s \gg M_H^2} -\frac{5M_H^2}{32\pi v^2} \longrightarrow M_H < 780 \text{ GeV}$$

Observe that: if there is no Higgs boson, i.e. $M_H \gg s$:

$$a_0(\omega^+\omega^- \to \omega^+\omega^-) \stackrel{M_H^2 \gg s}{\longrightarrow} -\frac{s}{32\pi v^2}$$

Imposing the unitarity constraint $\longrightarrow \sqrt{s_c} < 1.8 \text{ TeV}$
Most restrictive constraint $\longrightarrow \sqrt{s_c} < 1.2 \text{ TeV}$
 \Downarrow

New physics expected at the TeV scale

Exciting !! this is the range of energies of both Tevatron and LHC Triviality: a $\lambda \phi^4$ theory cannot be perturbative at all scales unless $\lambda = 0$.

In the SM the scale evolution of λ is more complicated:

$$32\pi^2 \frac{d\lambda}{dt} = 24\lambda^2 - (3g'^2 + 9g^2 - 24y_t^2)\lambda + \frac{3}{8}g'^4 + \frac{3}{4}g'^2g^2 + \frac{9}{8}g^4 - 24y_t^4 + \cdots$$
$$(t = \ln(Q^2/Q_0^2), y_t = m_t/v \rightarrow \text{top quark Yukawa coupling}).$$
Still, for large λ (\leftrightarrow large M_H) the first term dominates and (at 1-loop):

$$\lambda(Q) = \frac{\lambda(Q_0)}{1 - \frac{3}{4\pi^2}\lambda(Q_0)\ln\left(\frac{Q^2}{Q_0^2}\right)}$$

when Q grows $\longrightarrow \qquad \lambda(Q)$ hits a pole \rightarrow triviality

Imposing that $\lambda(Q)$ is finite, gives a scale dependent bound on M_H :

$$\frac{1}{\lambda(\Lambda)} > 0 \longrightarrow M_H^2 < \frac{8\pi^2 v^2}{3\log\left(\frac{\Lambda^2}{v^2}\right)}$$

where we have set $Q \to \Lambda$ and $Q_0 \to v$.

Vacuum stability: $\lambda(Q) > 0$

For small λ (\leftrightarrow small M_H) the last term in $d\lambda/dt = \ldots$ dominates and:

$$\lambda(\Lambda) = \lambda(v) - \frac{3}{4\pi^2} y_t^2 \log\left(\frac{\Lambda^2}{v^2}\right)$$

from where a first rough lower bound is derived:

$$\lambda(\Lambda) > 0 \longrightarrow M_H^2 > \frac{3v^2}{2\pi^2} y_t^2 \log\left(\frac{\Lambda^2}{v^2}\right)$$

More accurate analyses use 2-loop renormalization group improved V_{eff} .

EW precision fits: perturbatively calculate observables in terms of few parameters:

$$M_Z, G_F, \alpha(M_Z), M_W, m_f, (\alpha_s(M_Z))$$

extracted from experiments with high accuracy.

• SM needs Higgs boson to cancel infinities, e.g.

• Finite logarithmic contributions survive, e.g. radiative corrections to $\rho = M_W^2 / (M_Z^2 \cos^2 \theta_W)$:

$$\rho = 1 - \frac{11g^2}{96\pi^2 \tan^2 \theta_W} \ln\left(\frac{M_H}{M_W}\right)$$

Main effects in oblique radiative corrections (S,T-parameters)

• New physics at the scale Λ will appear as higher dimension effective operators.

M_H only unknown input...

Precision measurements of the SM, which fully test the quantum structure of the theory by including higher order loop corrections, constrain the mass of the SM Higgs to be light:

 $M_H < 251 \text{ GeV} (95\% \text{cl})$

Consequences for Standard-Model Higgs

(from the EWWG home page: lepewwg.web.cern.ch/LEPEWWG/)

MWG

Fine-tuning: M_H is unstable to ultraviolet corrections

$$M_H^2 = (M_H^0)^2 + \frac{g^2}{16\pi^2} \Lambda^2 \cdot \text{constant} + \text{ higher orders}$$

 $M_H^0 \rightarrow$ fundamental parameter of the SM $\Lambda \rightarrow$ UV-cutoff scale

Unless $\Lambda \simeq \text{EW-scale}$, fine-tuning is required to get $M_H \simeq \text{EW-scale}$. More generally, the all order calculation of V_{eff} would give:

$$\bar{\mu}^2 = \mu^2 + \Lambda^2 \sum_{n=0}^{\infty} c_n(\lambda_i) \log^n(\Lambda/Q)$$

Veltmann condition: the absence of large quadratic corrections is guaranteed by:

$$\sum_{n=0}^{\infty} c_n(\lambda_i) \log^n(\Lambda/M_H) = 0 \quad \text{or better} \sum_{n=0}^{n_{max}} c_n(\lambda_i) \log^n(\Lambda/M_H) = 0$$

In summary:

(C. Kolda and H. Murayama, hep-ph/0003170)

Adding more Higgs fields ... Main constraints from:

- ρ parameter: $M_W^2 = \rho M_Z^2 \cos^2 \theta_W, \ \rho \simeq 1.$
- flavor changing neutral currents.

Ex.: Two Higgs Doublet Models (2HDM)

Avoid FC couplings by imposing ad hoc discrete symmetry:

 $\begin{cases} \Phi^1 \to -\Phi^1 \text{ and } \Phi^2 \to \Phi^2 \\ d^i \to -d^i \text{ and } u^j \to \pm u^j \end{cases} \longrightarrow \begin{cases} \text{Model I: } u \text{ and } d \text{ coupled to same doublet} \\ \text{Model II: } u \text{ and } d \text{ coupled to different doublets} \end{cases}$

The Higgs bosons of the MSSM

Two complex $SU(2)_L$ doublets, with hypercharge $Y = \pm 1$:

$$\Phi_u = \begin{pmatrix} \phi_u^+ \\ \phi_u^0 \end{pmatrix} \quad , \quad \Phi_d = \begin{pmatrix} \phi_d^0 \\ \phi_d^- \end{pmatrix}$$

and (super)potential (Higgs part only):

$$V_{H} = (|\mu|^{2} + m_{u}^{2})|\Phi_{u}|^{2} + (|\mu|^{2} + m_{d}^{2})|\Phi_{d}|^{2} - \mu B\epsilon_{ij}(\Phi_{u}^{i}\Phi_{d}^{j} + h.c.) + \frac{g^{2} + g'^{2}}{8}(|\Phi_{u}|^{2} - |\Phi_{d}|^{2})^{2} + \frac{g^{2}}{2}|\Phi_{u}^{\dagger}\Phi_{d}|^{2}$$

The EW symmetry is spontaneously broken by choosing:

$$\langle \Phi_u \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_u \end{pmatrix} , \quad \langle \Phi_d \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_d \\ 0 \end{pmatrix}$$

normalized to preserve the SM relation: $M_W^2 = g^2 (v_u^2 + v_d^2)/4 = g^2 v^2/4$.

Five physical scalar/pseudoscalar degrees of freedom:

$$h^{0} = -(\sqrt{2}\operatorname{Re}\Phi_{d}^{0} - v_{d})\sin\alpha + (\sqrt{2}\operatorname{Re}\Phi_{u}^{0} - v_{u})\cos\alpha$$
$$H^{0} = (\sqrt{2}\operatorname{Re}\Phi_{d}^{0} - v_{d})\cos\alpha + (\sqrt{2}\operatorname{Re}\Phi_{u}^{0} - v_{u})\sin\alpha$$
$$A^{0} = \sqrt{2}\left(\operatorname{Im}\Phi_{d}^{0}\sin\beta + \operatorname{Im}\Phi_{u}^{0}\cos\beta\right)$$
$$H^{\pm} = \Phi_{d}^{\pm}\sin\beta + \Phi_{u}^{\pm}\cos\beta$$
where $\tan\beta = v_{u}/v_{d}$.

All masses can be expressed (at tree level) in terms of $|\tan\beta|$ and M_A :

$$M_{H^{\pm}}^2 = M_A^2 + M_W^2$$

$$M_{H,h}^2 = \frac{1}{2} \left(M_A^2 + M_Z^2 \pm \left((M_A^2 + M_Z^2)^2 - 4M_Z^2 M_A^2 \cos^2 2\beta \right)^{1/2} \right)$$

Notice: tree level upper bound on M_h : $M_h^2 \le M_Z^2 \cos 2\beta \le M_Z^2$!

Higgs masses greatly modified by radiative corrections.

In particular, the upper bound on M_h becomes:

$$M_h^2 \le M_Z^2 + \frac{3g^2 m_t^2}{8\pi^2 M_W^2} \left[\log\left(\frac{M_S^2}{m_t^2}\right) + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2}\right) \right]$$

where $M_S \equiv (M_{\tilde{t}_1}^2 + M_{\tilde{t}_2}^2)/2$ while X_t is the top squark mixing parameter:

In summary:

 $M_h^{max} \simeq 135 \,\,\mathrm{GeV}$

(if top-squark mixing is maximal)

Moreover, interesting "sum-rule":

$$M_{H}^{2}\cos^{2}(\beta - \alpha) + M_{h}^{2}\sin^{2}(\beta - \alpha) = [M_{h}^{max}\tan\beta]^{2}$$

large $\tan\beta \longrightarrow \begin{cases} M_{A} > M_{h}^{max} \longrightarrow M_{h} \simeq M_{h}^{max}, M_{H} \simeq M_{A} \\ M_{A} < M_{h}^{max} \longrightarrow M_{H} \simeq M_{h}^{max}, M_{h} \simeq M_{A} \end{cases}$

Higgs boson couplings to SM gauge bosons:

Some phenomelogically important ones:

$$g_{hVV} = g_V M_V \sin(\beta - \alpha) g^{\mu\nu}$$
, $g_{HVV} = g_V M_V \cos(\beta - \alpha) g^{\mu\nu}$

where $g_V = 2M_V/v$ for V = W, Z, and

$$g_{hAZ} = \frac{g\cos(\beta - \alpha)}{2\cos\theta_W} (p_h - p_A)^{\mu} , \quad g_{HAZ} = -\frac{g\sin(\beta - \alpha)}{2\cos\theta_W} (p_H - p_A)^{\mu}$$

Notice: $g_{AZZ} = g_{AWW} = 0$, $g_{H^{\pm}ZZ} = g_{H^{\pm}WW} = 0$
Decoupling limit: $M_A \gg M_Z \longrightarrow \begin{cases} M_h \simeq M_h^{max} \\ M_H \simeq M_{H^{\pm}} \simeq M_A \end{cases}$

$$\cos^{2}(\beta - \alpha) \simeq \frac{M_{Z}^{4} \sin^{2} 4\beta}{M_{A}^{4}} \longrightarrow \begin{cases} \cos(\beta - \alpha) \to 0\\ \sin(\beta - \alpha) \to 1 \end{cases}$$

The only low energy Higgs is $h \simeq H_{SM}$.

Higgs boson couplings to quarks and leptons:

Yukawa type couplings, Φ_u to up-component and Φ_d to down-component of $SU(2)_L$ fermion doublets. Ex. (3rd generation quarks):

$$\mathcal{L}_{Yukawa} = h_t \left[\bar{t} P_L t \Phi_u^0 - \bar{t} P_L b \Phi_u^+ \right] + h_b \left[\bar{b} P_L b \Phi_d^0 - \bar{b} P_L t \Phi_d^- \right] + \text{h.c.}$$

and similarly for leptons. The corresponding couplings can be expressed as $(y_t, y_b \rightarrow SM)$:

$$g_{ht\bar{t}} = \frac{\cos\alpha}{\sin\beta}y_t = [\sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)]y_t$$

$$g_{hb\bar{b}} = -\frac{\sin\alpha}{\cos\beta}y_b = [\sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)]y_b$$

$$g_{Ht\bar{t}} = \frac{\sin\alpha}{\sin\beta}y_t = [\cos(\beta - \alpha) - \cot\beta\sin(\beta - \alpha)]y_t$$

$$g_{Hb\bar{b}} = \frac{\cos\alpha}{\cos\beta}y_b = [\cos(\beta - \alpha) + \tan\beta\sin(\beta - \alpha)]y_b$$

$$g_{At\bar{t}} = \cot\beta , \quad g_{Ab\bar{b}} = \tan\beta$$

$$g_{H\pm t\bar{b}} = \frac{g}{2\sqrt{2}M_W}[m_t\cot\beta(1 - \gamma_5) + m_b\tan\beta(1 + \gamma_5)]$$

Notice: consistent decoupling limit behavior.

Higgs couplings modified by radiative corrections

Most important effects:

• Corrections to $\cos(\beta - \alpha)$: crucial in decoupling behavior.

$$\cos(\beta - \alpha) = K \left[\frac{M_Z^2 \sin 4\beta}{2M_A^2} + \mathcal{O}\left(\frac{M_Z^4}{M_A^4}\right) \right]$$

where

$$K \equiv 1 + \frac{\delta \mathcal{M}_{11}^2 - \delta \mathcal{M}_{22}^2}{2M_Z^2 \cos 2\beta} - \frac{\delta \mathcal{M}_{12}^2}{M_Z^2 \sin 2\beta}$$

 $\delta \mathcal{M}_{ij} \longrightarrow$ corrections to the CP-even scalar mass matrix.

• Corrections to 3rd generation Higgs-fermion Yukawa couplings.

 $-\mathcal{L}_{eff} = \epsilon_{ij} \left[(h_b + \delta h_b) \bar{b}_R H_d^i Q_L^j + (h_t + \delta h_t) \bar{t}_R H_u^j Q_L^i \right] + \Delta h_t \bar{t}_R Q_L^k H_d^{k*} + \Delta h_b \bar{b}_R Q_L^k H_u^{k*} + \text{h.c.}$

$$m_b = \frac{h_b v}{\sqrt{2}} \cos\beta \left(1 + \frac{\delta h_b}{h_b} + \frac{\Delta h_b \tan\beta}{h_b} \right) \equiv \frac{h_b v}{\sqrt{2}} \cos\beta (1 + \Delta_b)$$
$$m_t = \frac{h_t v}{\sqrt{2}} \sin\beta \left(1 + \frac{\delta h_t}{h_t} + \frac{\Delta h_t \tan\beta}{h_t} \right) \equiv \frac{h_t v}{\sqrt{2}} \sin\beta (1 + \Delta_t)$$

100 100 hh b b bb -t t $\tan \beta = 3$ $\tan \beta = 3$ W^+W^- Branching Ratio (h,H) $au^+ au^-$ 10-1 10^{-1} ZZ $au^+ au^-$ Branching Ratio (H) ZZ / bb $au^+ au^$ сc c c 10-2 10⁻² ZΑ、 $\mathbf{Z}\mathbf{Z}$ gg gg_ γγ 10-3 10⁻³ $\gamma\gamma$ $Z\gamma$ hhSS ss $u^+\mu^ \overline{c}c$ hh $\mu^+\mu^-$ W[±]H[†] Zo $\mathbf{S} \mathbf{S}$ 10^{-4} 10^{-4} 120 160 180 300 100 140 200 200 500 700 1000 (GeV) $m_{\rm H}$ (GeV) $m_{\rm H}$ (GeV) mh 100 100 bb bb bb $\tan \beta = 30$ $\tan \beta = 30$ $au^+ au^$ $au^+ au^-$ Branching Ratio (h,H) $\tau^+ \tau^ 10^{-1}$ 10^{-1} Branching Ratio (H) 10⁻² 10-2 tt ____s ss $\mathbf{S} \mathbf{S}$ <u>10</u>-3 10-3 ģġ gg $\mu^+\mu^ \mu^+\mu^ \mu^+\mu^$ hh W^+W $W^+W^ W^+W$ gg ZZZZ 10^{-4} 10^{-4} 120 160 200 300 700 140 100 180 200 500 1000 m_h (GeV) $m_{\rm H}$ (GeV) m_H (GeV)

MSSM Higgs boson branching ratios, possible scenarios:

MSSM Higgs boson branching ratios, possible scenarios:

MSSM Higgs boson branching ratios, possible scenarios:

Experimental searches for a Higgs boson

LEP looked for the SM and the MSSM Higgs bosons in three channels:

The absence of a convincing signal sets the lower bounds:

$$\sqrt{s_{\text{max}}} = 189 - 209 \,\text{GeV} \left\{ \begin{array}{ll} M_H > 114.4 \,\text{Gev} & (95\% \,\text{c.l.}) \\ \\ M_{h^0/H^0} > 91.0 \,\text{GeV}, M_{A^0} > 91.9 \,\text{GeV} & (95\% \,\text{c.l.}) \end{array} \right.$$

Some puzzling events around $M_H = 115 \text{ GeV} \dots$

"The resolution of this puzzle is now left to the Fermilab's Tevatron and the LHC." (L. Maiani, CERN Director)

Searching for (the) Higgs Boson ...

... a jazz fusion pianist in the UK ...

Searching for (the) Higgs Boson ...

"... The Higgs Boson wheel isn't really a wheel. It isn't even designed to roll on; it's designed to grind with. As any anti-rocker skater knows..."

"... Anti-rocker skating isn't for everyone, and the Higgs Boson certainly isn't for everyone. But we love it. And we feel it satisfies a need that has been ignored for too long..."