Higgs Boson Physics, Part III

Laura Reina

TASI 2004, Boulder

Outline of Part III

- Searching for a Higgs boson: present and future.
- Higgs boson physics at the Tevatron, Run II.
 - \longrightarrow Main production modes.
 - \longrightarrow Exclusion/discovery reach for a SM/MSSM Higgs boson.
- Higgs boson physics at the Large Hadron Collider (LHC).
 - \longrightarrow Main production modes.
 - \longrightarrow Discovery reach for a SM/MSSM Higgs boson.
 - \longrightarrow Measurements of the Higgs boson mass, width, spin.
 - \longrightarrow Measurements of Higgs boson couplings.
- Higgs boson physics at a high energy Linear Collider (LC).
 - \longrightarrow Production reach for a SM/MSSM Higgs boson.
 - \longrightarrow Precision measurements of most Higgs boson properties.

Some References for Part III

- Theory and Phenomenology of the Higgs boson(s):
 - ▷ Higgs Boson Theory and Phenomenology,
 - M. Carena and H.E. Haber, hep-ph/0208209
- Specific studies and reports:
 - ▷ CMS Collaboration, CERN/LHCC/94-38,1994
 - ▷ ATLAS Collaboration, CERN/LHCC/99-15,1999
 - $\triangleright\,$ Report of the Tevatron Higgs working group, hep-ph/0010338.
 - Proceedings of the Les Houches Workshop on Physics at TeV Colliders, 2001.
 - $\triangleright\,$ Results of the Tevatron Higgs sensitivity study, October 2003.
 - Les Houches workshop on Physics at TeV Colliders: report of the Higgs working group, hep-ph/0406152.
 - $\triangleright\,$ TESLA technical design report, Part III, hep-ph/0106315.
 - $\triangleright\,$ Linear Collider Physics Resourche Book, Part II, hep-ex/0106056.

Searching for the Higgs boson: present and future

- ▷ A light Higgs boson, in the 110-180 GeV range, could be discovered during Run II of the Tevatron (Fermilab), with $\sqrt{s}=1.96$ TeV.
- ▷ The Large Hadron Collider (CERN), with $\sqrt{s}=14$ TeV, will cover the entire Higgs boson mass range up to 1 Tev, and start measuring mass, couplings, and width of the discovered particle.
- ▷ A high energy LC (?), with $\sqrt{s} \ge 500$ GeV, will unambiguously identify the nature of any discovered new particle, via precision measurements of its mass, spin, couplings, and width.

The basic picture of a $p\bar{p}, pp \to X$ high energy process ...

where the <u>short</u> and <u>long distance</u> part of the QCD interactions can be factorized and the cross section for $pp, p\bar{p} \to X$ can be calculated as:

$$\sigma(pp, p\bar{p} \to X) = \sum_{ij} \int dx_1 dx_2 f_i^{\ p}(x_1) f_j^{\ p,\bar{p}}(x_2) \hat{\sigma}(ij \to X)$$

$p\bar{p}, pp$ colliders: SM Higgs production modes

 $q\bar{q}, gg \rightarrow t\bar{t}H, b\bar{b}H$

t,b

ī, b

Searching for a SM Higgs boson at the Tevatron

Mainly in:

- Below 130-140 GeV
 - $q\bar{q} \to VH, \ H \to b\bar{b}$
- Above 130-140 GeV $q\bar{q} \rightarrow VH, H \rightarrow WW$

with V = Z, W

But also:

- $gg \to H$ (above 130 GeV)
- $q\bar{q} \to t\bar{t}H \ (H \to bb, WW)$

Too low statistics to measure Higgs couplings.

Reach of the Tevatron, Run II, for a SM Higgs boson

Improved studies suggest that less luminosity is needed both for exclusion and discovery. Searching for an MSSM Higgs boson at the Tevatron

We expect that:

- AVV couplings are absent
- couplings can be enhanced/suppressed

 $\begin{array}{l} \triangleright \ M_A \gg M_Z \ (\longrightarrow \text{ decoupling limit}): \\ \longrightarrow \ h^0 \longrightarrow H_{SM}, \text{ while} \\ \longrightarrow \ M_A \simeq M_H \quad \text{and} \quad g_{(A,H)b\bar{b}} \gg g_{H_{SM}b\bar{b}} \ , \ g_{HVV} \ll g_{H_{SM}VV}. \\ \\ \triangleright \ M_A \leq M_Z \text{ and } \tan \beta \gg 1: \\ \longrightarrow \ g_{HVV} \simeq g_{H_{SM}VV}, \text{ while} \\ \longrightarrow \ M_A \simeq M_h \quad \text{and} \quad g_{(A,h)b\bar{b}} \gg g_{H_{SM}b\bar{b}} \ , \ g_{hVV} \ll g_{H_{SM}VV}. \end{array}$

We could also have:

- Higgs bosons decaying into supersymmetric particles.
- Higgs bosons produced in the decay of supersymmetric particles.

We will consider only:

- ▷ SM-like production modes (see previous section)
- ▶ the associated production modes:

10^{2} 10^{4} $\sigma(p\bar{p}\rightarrow h/H+X)$ [pb] $\sigma(p\bar{p}\rightarrow h/H+X)$ [pb] 10^{3} $\sqrt{s} = 2 \text{ TeV}$ $\sqrt{s} = 2 \text{ TeV}$ 10 $M_t = 175 \text{ GeV}$ $M_{t} = 175 \text{ GeV}$ 10^{2} bb→h CTEQ4 CTEQ4 gg→h $tg\beta = 3$ $tg\beta = 30$ 1 gg→ 10 ЬБ→Н hW hbĐ gg→H -1 hΖ HW gg→H 10 1 hqq -1 10 Hbb -2 10 hbb Htī -2 Hqq 10 htī hW 10 -3 10 -3 HZ Hbb **HW** hqq htī (h) H h (\mathbf{H}) Htī HZ. ←Hqq 10 10 100 120 140 180 200 100 120 140 160 180 80 160 80 200 M_{h/H} [GeV] M_{h/H} [GeV] 10^{2} $\sigma(p\bar{p}\rightarrow A+X)$ [pb] $\sigma(p\bar{p}\rightarrow A+X)$ [pb] ЬБ→А 10 $\sqrt{s} = 2 \text{ TeV}$ $\sqrt{s} = 2 \text{ TeV}$ $M_{t} = 175 \text{ GeV}$ $M_{t} = 175 \text{ GeV}$ CTEQ4 CTEQ4 1 gg→A gg→A $tg\beta = 3$ 10 $tg\beta = 30$ -1 10 gg,qą→Abb -2 10 gg,qą→Abb 1 10 -3 -4 -1 10 10 140 160 120 140 160 100 120 180 80 100 180 80 200 200

M_A [GeV]

M₄ [GeV]

Neutral Higgs boson production cross sections at the Tevatron

 H^{\pm} production at the Tevatron

$$\begin{array}{l} \searrow M_{H^{\pm}} < m_t - m_b \\ \longrightarrow p \bar{p} \rightarrow t \bar{t} + t \rightarrow b H^+ \ (\bar{t} \rightarrow \bar{b} H^-) \\ \longrightarrow p \bar{p} \rightarrow \bar{t} b H^+, t \bar{b} H^- \\ & \searrow M_{H^{\pm}} > m_t - m_b \\ \longrightarrow p \bar{p} \rightarrow \bar{t} b H^+, t \bar{b} H^- \\ \longrightarrow p \bar{p} \rightarrow W^{\pm} H^{\mp} \\ \longrightarrow p \bar{p} \rightarrow H^+ H^- \end{array}$$

Reach of the Tevatron, Run II, in the MSSM parameter space

Using:

$$\longrightarrow p\bar{p} \to V\phi \ (\phi = h^0, H^0)$$
$$\longrightarrow p\bar{p} \to b\bar{b}\phi \ (\phi = h^0, H^0, A^0)$$

Searching for a SM Higgs boson at the LHC

Below 130-140 GeV:

•
$$gg \to H, H \to \gamma\gamma, W^+W^-, ZZ$$

•
$$qq \rightarrow qqH$$
, $H \rightarrow \gamma\gamma, W^+W^-, ZZ, \tau^+\tau^-$

•
$$q\bar{q}, gg \to t\bar{t}H, H \to b\bar{b}, \tau^+\tau^-$$

Above 130-140 GeV:

•
$$gg \to H, H \to W^+W^-, ZZ$$

•
$$qq \rightarrow qqH$$
, $H \rightarrow \gamma\gamma, W^+W^-, ZZ$

•
$$q\bar{q}, gg \to t\bar{t}H, H \to W^+W^-$$

Discovery reach of the LHC for a SM Higgs boson

Mass, Width, Spin and more

- Color and charge are given by the measurement of a given (production+decay) channel.
- The Higgs boson mass will be measured with 0.1% accuracy in $H \to ZZ^* \to 4l^{\pm}$, complemented by $H \to \gamma\gamma$ in the low mass region. Above $M_H \simeq 400$ GeV precision deteriorates to $\simeq 1\%$ (lower rates).
- The Higgs boson width can be measured in $H \to ZZ^* \to 4l^{\pm}$ above $M_H \simeq 200$ GeV. The best accuracy of $\simeq 5\%$ is reached for $M_H \simeq 400$ GeV. Below $M_H \simeq 200$ GeV \longrightarrow see later.
- The Higgs boson spin could be measured through angular correlations between fermions in H → VV → 4f, but this will be impaired by lack of statistics.

The LHC can also measure most SM Higgs couplings at 10-30%!

Consider all accessible channels:

- Below 130-140 GeV $gg \rightarrow H, H \rightarrow \gamma\gamma, WW, ZZ$ $qq \rightarrow qqH, H \rightarrow \gamma\gamma, WW, ZZ, \tau\tau$ $q\bar{q}, gg \rightarrow t\bar{t}H, H \rightarrow b\bar{b}, \tau\tau$
- Above 130-140 GeV $gg \rightarrow H, H \rightarrow WW, ZZ$ $qq \rightarrow qqH, H \rightarrow \gamma\gamma, WW, ZZ$ $q\bar{q}, gg \rightarrow t\bar{t}H, H \rightarrow WW$

Observing a given production+decay (p+d) channel gives a relation:

$$(\sigma_p(H)\operatorname{Br}(H \to dd))^{exp} = \frac{\sigma_p^{th}(H)}{\Gamma_p^{th}} \frac{\Gamma_d\Gamma_p}{\Gamma}$$

(in the narrow Higgs approximation).

Associate to each channel $(\sigma_p(H) \times Br(H \to dd))$

$$Z_d^{(p)} = \frac{\Gamma_p \Gamma_d}{\Gamma} \qquad \begin{cases} \Gamma_p \simeq g_{Hpp}^2 = y_p^2 \to \text{production} \\ \Gamma_d \simeq g_{Hdd}^2 = y_d^2 \to \text{decay} \end{cases}$$

From LHC measurements, given the current simulated accuracies:

• Determine in a model independent way ratios of couplings at the 10 - 20% level, for example:

$$\frac{y_b}{y_\tau} \quad \longleftarrow \quad \frac{\Gamma_b}{\Gamma_\tau} = \frac{Z_b^{(t)}}{Z_\tau^{(t)}}$$
$$\frac{y_t}{y_g} \quad \longleftarrow \quad \frac{\Gamma_t}{\Gamma_g} = \frac{Z_\tau^{(t)} Z_\gamma^{(w)}}{Z_\tau^{(w)} Z_\gamma^{(g)}}$$

• Determine individual couplings at the 10-30% level (under the assumption: $\Gamma = \Gamma_b + \Gamma_\tau + \Gamma_w + \Gamma_z + \Gamma_g + \Gamma_\gamma$)

Accuracies on Couplings and Width of a Higgs boson with $M_H < 140 \text{ GeV}$

systematics: theoretical error on $gg \rightarrow H \longrightarrow 20\%$ $qq \rightarrow qqH \longrightarrow 5\%$ $pp \rightarrow t\bar{t}H \longrightarrow 10\%$

Plus assumptions on Γ_Z/Γ_W (and Γ_τ/Γ_b)

Toward a more model independent determination of Higgs couplings and width

MSSM Higgs boson production cross sections at the LHC

H^{\pm} production at the LHC

(see Tevatron section for more details on production modes)

Reach of the LHC in the MSSM parameter space

Low luminosity, CMS only

High luminosity, ATLAS+CMS

e^+e^- colliders: SM Higgs production modes

and additional MSSM modes

The Linear Collider: precision Higgs physics

Production cross sections for a SM Higgs boson:

Production cross sections for an MSSM Higgs boson:

Program:

One or more Higgs bosons will be observed over the entire mass spectrum. A high energy e^+e^- collider will then have the unique possibility of:

- Measure $\sigma(e^+e^- \to ZH)$ at the 2% level: extract $Br(H \to xx)$ in model independent way!
- Measure M_H from the recoiling $f\bar{f}$ mass in $ZH \to Hf\bar{f}$. Accuracies of the order of 50-80 MeV can be obtained.

spin measured by:

- \triangleright onset slope of the $e^+e^- \to ZH$
- \triangleright correlations in $e^+e^- \to ZH \to 4f, \ldots$
- \triangleright phase space distributions in $e^+e^- \to t\bar{t}H$

• Measure Γ_H below $M_H \simeq 200$ Gev combining $\operatorname{Br}(H \to W^+W^-)$ (from $e^+e^- \to ZH$) and g_{HWW} (from $e^+e^- \to H\nu\bar{\nu}$), with a $\simeq 6\%$ accuracy.

Coupling:	$Hbar{b}$	$H\tau^+\tau^-$	$Hc\bar{c}$	HWW	HZZ	$Htar{t}$	HHH
$(M_H \!=\! 120 \text{ GeV})$	2.2%	3.3%	3.7%	1.2%	1.2%	25%	17%
$(M_H \!=\! 140 \text{ GeV})$	2.2%	4.8%	10%	2.0%	1.3%		23%
Theory	1.4%	2.3%	23%	2.3%	2.3%	5%	

<u>Ex.</u> :	SM	Higgs	boson,	\sqrt{s} =	=120	GeV
--------------	----	-------	--------	--------------	------	-----

Difficult measurements:

Optimal to distinguish H_{SM} from h^0

