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Outline of Lecture III

• Looking for a SM Higgs boson at hadron colliders:

−→ parton level production processes;
−→ Tevatron Higgs physics program;
−→ LHC Higgs physics program.

• Structure of hadronic processes: most important building blocks.

(→֒ see John Campbell’s lectures)

• How can a theorist do a good job?

−→ understand hadronic environment;
−→ understand experimental measurements;
−→ understand the systematic of the theoretical errors.

• Examples from Higgs physics:

−→ gg → H: a tutorial in itself!
−→ overview of inclusive theoretical predictions;
−→ ongoing studies for exclusive channels.

• What we haven’t discussed . . .



pp̄, pp colliders: SM Higgs production modes
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Tevatron: great potential for a light SM-like Higgs boson
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→֒ Exclusion region very important for LHC search strategies.



LHC: entire SM Higgs-boson mass range accessible
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Above 130-140 GeV:

gg → H , H →WW,ZZ

qq → qqH , H → γγ,WW,ZZ

qq̄, gg → tt̄H , H → γγ,WW

qq̄′ →WH , H →WW

(M. Spira, Fortsch.Phys. 46 (1998) 203)



With
√
s = 7 TeV and a few fb−1 . . .

Combining only H → W+W−, H → ZZ, H → γγ, ATLAS and CMS

indicate that,

• if no signal, the SM Higgs can be excluded up to 500 GeV;

• a 5σ significance for a SM Higgs in the 140− 170 GeV mass range;

• in the low mass region (←֓ new strategies, new ideas).
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where also WH,H → bb̄ (highly boosted) and VBF with H → ττ were used.



Data!

 [GeV]H m
100 200 300 400 500 600

S
M

σ/σ
 9

5%
 C

.L
. l

im
it 

on
 

0

50

100

150

200

250

300

350

400

450
Observed
Expected

σ 1±
σ+ 2

Observed
Expected

σ 1±
σ+ 2

Observed CLs
Expected CLs

=7TeVs, -1Ldt=40 pb∫

llll→ZZ→H

 PreliminaryATLAS

→֒ see talks by John Conway (CMS) and Chris Lester (ATLAS).





Schematically . . .

The hard cross section is calculated perturbatively

σ̂(ij → X) = αk
s

n
∑

m=0

σ̂
(m)
ij αm

s

n=0 : Leading Order (LO), or tree level or Born level

n=1 : Next to Leading Order (NLO), include O(αs) corrections

. . . . . .

and convoluted with initial state parton densities at the same order.

Renormalization and factorization scale dependence left at any fixed order.

Setting µR = µF = µ :

σ(pp, pp̄→ X) =
∑

ij

∫

dx1dx2f
p
i (x1, µ)f

p,p̄
j (x2, µ)

n
∑

m=0

σ̂
(m)
ij (µ,Q2)αm+k

s (µ)

Systematic theoretical error from:

⊲ PDF and αs(µ);

⊲ left over scale dependence;

⊲ input parameters.



Systematic error from PDFs: need care . . .

Several PDF sets (CTEQ, MSTW, NNPDF, . . .) allow to estimate the

error from αs and error obtained by varying the inputs used in the PDF fit

within their experimental error.

However: results obtained using different sets of PDF differ by much more

than the respective internal errors −→ difference from parametrization

Example: Tevatron bound has been questioned with the claim that the error

from PDF’s has been largely underestimated
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(Baglio, Djouadi, Ferrag, Godbole, arXiv:1101.1832)



PDF4LHC: problem carefully studies for LHC physics
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(Forte, Huston, Mazumdar, Thorne, Vicini, arXiv:1101.0593)

• NLO: use sets that perform a global fit to all available collider data:

CTEQ(6.6), MSTW(2008), NNPDF(2.0). Estimate the error from PDF

using the envelope prescription.

• NNLO: use MSTW(2008), normalized to a more conservative error i.e.

multiplied by (NLO envelope error/NLO MSTW2008 error).



Hard cross sections: pushing the loop order, why?

• Stability and predictivity of theoretical results, since less sensitivity to

unphysical renormalization/factorization scales. First reliable

normalization of total cross-sections and distributions.

• Physics richness: more channels and more partons in final state, i.e.

more structure to better model (in perturbative region):

−→ differential cross-sections, exclusive observables;
−→ jet formation/merging and hadronization;
−→ initial state radiation.

• First step towards matching with algorithms that resum particular

sets of large corrections in the perturbative expansion:

−→ resummed calculations (e.g. soft/collinear logs, kinematic logs);
−→ parton shower Monte Carlo programs (e.g. PYTHIA, HERWIG).



NLO: challenges have largely been faced and enormous progress
has been made

• several independent codes based on traditional FD’s approach

• several NLO processes collected and viable in MFCM (→ interfaced with

FROOT) [Campbell, Ellis]

• Enormous progress towards automation:

→ Virtual corrections: new techniques based on unitarity methods and

recursion relations

⊲ BlackHat [Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower,

Maitre]

⊲ Rocket [Ellis, Giele, Kunszt, Melnikov, Zanderighi]

⊲ HELAC+CutTools,Samurai [Bevilacqua, Czakon, van Harmeren,

Papadopoulos, Pittau,Worek; Mastrolia, Ossola, Reiter, Tramontano]

→ Real corrections: based on Catani-Seymour Dipole subtraction or FKS

subtraction

⊲ Sherpa [Gleisberg, Krauss]

⊲ Madgraph (AutoDipole) [Hasegawa, Moch, Uwer]

⊲ Madgraph (MadDipole) [Frederix, Gehrmann, Greiner]

⊲ Madgraph (MadFKS) [Frederix,Frixione, Maltoni, Stelzer]



• virtual+real:

⊲ MadLoop+MadFKS [Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau]

• interface to parton shower well advanced:

⊲ MC@NLO [Frixione, Webber, Nason, Frederix, Maltoni, Stelzer]

⊲ POWHEG [Nason, Oleari, Alioli, Re]

When is NLO not enough?

• When NLO corrections are large, to tests the convergence of the

perturbative expansion. This may happen when:

→ processes involve multiple scales, leading to large logarithms of the

ratio(s) of scales;

→ new parton level subprocesses first appear at NLO;

→ new dynamics first appear at NLO;

→ . . .

• When truly high precision is needed (very often the case!).

• When a really reliable error estimate is needed.



Important questions arise when interpreting data . . .

• Should the factorization/renormalization scales be varied separately or

together?

• How are these higher order predictions related to the LO event generators

that one most often uses?

• How to deal with higher order differential distributions?

• Using NLO (NNLO) calculations to provide best LO (NLO) estimates for

multi-parton final states: best scale choice? impact of jet algorithm choice?

• What is the impact of jet vetoing on the theoretical uncertainty for a

signal/background cross section?

• What theory uncertainties should be included as acceptance uncertainties

when setting limits on a cross section?

• Many more!



No unique or simple answer . . .

Some guiding principles:

• reduce the dependence on unphysical scales (renorm./fact. scale);

• have the perturbative expansion of physical observables (inclusive σ,

distributions, . . .) to show a well behaved convergence.

Several possible steps:

• add enough higher order corrections (NLO, NNLO) till: scale dependence

improves, no large next-order corrections expected;

• look for recurrent large contributions that may spoil convergence;

• find the best expansion parameter (αs, αs times large logarithms, . . .);

• using scaling properties, resum large scale dependent corrections;

• find the best choice of unphysical scales to avoid generating large

logarithmic corrections at all orders;

• study the effect of cuts and vetos.



A tutorial: gg → H, main production mode
. . . large K-factors, scale dependence, resummations, and more.

NLO QCD corrections calculated exactly and in the mt →∞ limit:

perfect agreement even for MH >> mt.

⇓

Dominant soft dynamics do not resolve the Higgs boson coupling to gluons

g
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Fixed order NNLO:
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[Harlander,Kilgore (02)]

• very large corrections in going LO→ NLO (K=1.7-1.9)→ NNLO (K=2-2.2);

• perturbative convergence LO → NLO (70%) → NNLO (30%):

residual 15% theoretical uncertainty.

• Tevatron case: still some tension.



Resumming effects of soft radiation . . .

[Catani,de Florian,Grazzini,Nason(03)]

Theoretical uncertainty reduced to:

−→ ≃ 10% perturbative uncertainty, including the mt →∞ approximation.

−→ ≃ 10% (estimated) from NNLO PDF’s (now existing!).

But . . . let us remember that: going from MRST2002 to MSTW2008 greatly
affected the Tevatron/LHC cross section: from 9%/30% (MH = 115 GeV) to
-9%/+9% (MH = 200/300 GeV) !

[De Florian,Grazzini (09)]



Resumming effects of soft radiation for qH
T

spectrum . . .

large qT
qT>MH

−→

perturbative expansion in αs(µ)

small qT
qT≪MH

−→

need to resum large ln(M2
H/q2T )

residual uncertainty:

LO-NLL: 15-20%

NLO-NNLL: 8-20%

[Bozzi,Catani,De Florian,Grazzini (04-08)]



Exclusive NNLO results: gg → H, H → γγ,WW,ZZ

Extension of (IR safe) subtraction method to NNLO

−→ HNNLO[Catani,Grazzini (05)]

−→ FEHiP [Anastasiou,Melnikov,Petriello (05)]

Essential tools to reliably implement experimental cuts/vetos.

[Anastasiou,Melnikov,Petriello (05)]

jet veto (to enhance H →WW signal with respect to tt̄ background) seems to

improve perturbative stability of y-distribution −→ jet veto is removing

non-NNLO contributions.



Full fledged (gg →)H → W+W− → l+νl−ν̄

The magnitude of higher order corrections varies significantly with the signal

selection cuts.

[Anastasiou,Dissertori,Stöckli (07)]



gg → H implemented in MC@NLO and POWHEG

[Nason, Oleari, Alioli, Re]

→ general good agreement with PYTHIA;

→ comparison MC@NLO vs POWHEG understood;

→ comparison with resummed NLL results under control.

→ rescale effects using NNLL/NLL knowledge.



Inclusive SM Higgs Production: theoretical predictions and
their uncertainty
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(LHC Higgs Cross Sections Working Group, arXiv:1101.0593 → CERN Yellow Book)

• all orders of calculated higher orders corrections included (tested with all

existing calculations);

• theory errors (scales, PDF, αs, . . .) combined according to common recipe.

• Exclusive observables: started in 2011.
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Towards exclusive studies: including decays, cuts, jet vetos,
backgrounds, . . .

• Obtain distibutions from NLO/NNLO/NNLL calculations.

• Study the impact of higher order corrections in the presence of cuts,

jet vetos, etc.

• If cuts imposed on decay products, need to include decays and

estimate higher order corrections to the new process

• high multiplicity of final state makes calculation more involved (very few

NLO calculations exist)

• new NLO tools may allow fast progress.

• Interface with NLO Monte Carlo would be best:

• MC@NLO: gg → H, W/ZH;

• POWHEG: gg → H, qq̄′H.

• Backgrounds need to be calculated with comparable accuracy.



Recently completed NLO calculations: most are relevant
backgrounds to Higgs-boson physics!

Process (V ∈ {Z,W, γ}) Calculated by

pp → V+2 jets(b) Campbell,Ellis,Maltoni,Willenbrock (06)

pp → V bb̄ Febres Cordero,Reina,Wackeroth (07-08)

pp → Wbb̄ Campbell,Ellis (10)

pp → V V+jet Dittmaier,Kallweit,Uwer (WW+jet) (07)

Campbell,Ellis,Zanderighi (WW+jet+decay) (07)

Binoth,Karg,Kauer,Sanguinetti (09)

pp → V V+2 jets Bozzi,Jäger,Oleari,Zeppenfeld (via WBF) (06-07)

pp → V V V Lazopoulos,Melnikov,Petriello (ZZZ) (07)

Binoth,Ossola,Papadopoulos,Pittau (WWZ,WZZ,WWW ) (08)

Hankele,Zeppenfeld (WWZ → 6 leptons, full spin correlation) (07)

pp → H+2 jets Campbell,Ellis,Zanderighi (NLO QCD to gg channel)(06)

Ciccolini,Denner,Dittmaier (NLO QCD+EW to WBF channel) (07)

pp → H+3 jets Figy,Hankele,Zeppenfeld (large Nc) (07)

pp → tt̄+jet Dittmaier,Uwer,Weinzierl (07), Ellis,Giele,Kunszt (08)

pp → tt̄Z Lazopoulos,Melnikov,Petriello (08)

gg → WW Binoth,Ciccolini,Kauer,Kramer (06)

gg → HH,HHH Binoth,Karg,Kauer,Rückl (06)

pp → tt̄ bb̄ Bredenstein et al., Bevilacqua et al. (09)

pp → V+3jets Berger et al., Ellis et al. (09)

pp → W+4jets Berger et al. (10)



We have not disscussed: study of Higgs properties

At the LHC:

• Color and charge will be given by the measurement of a given

(production+decay) channel.

• The Higgs boson mass will be measured with 0.1% accuracy in

H → ZZ∗ → 4l±, complemented by H → γγ in the low mass region.

Above MH ≃ 400 GeV precision deteriorates to ≃ 1% (lower rates).

• The Higgs boson width can be measured in H → ZZ∗ → 4l± above

MH ≃ 200 GeV. The best accuracy of ≃ 5% is reached for MH ≃ 400 GeV.

• The Higgs boson spin could be measured through angular correlations

between fermions in H → V V → 4f : need for really high statistics.

• The Higgs boson couplings will be measured combining multiple channels:

(σp(H)Br(H → dd))exp =
σth
p (H)

Γth
p

ΓdΓp

ΓH

Higgs self-couplings will be very hard!



Conclusions and Outlook

• We are living through a new era in Higgs boson physics: looking for

direct evidence.

• SM Higgs boson precision physics has given a first coherent set of

predictions for inclusive observables: Higgs boson production cross

sections and branching ratios.

• Short term: study exclusive observables, including decays, background

processes, and experimental cuts.

• Long term: the LHC can carry through a precision program that also

include measurements of Higgs boson properties, to identify it:

• high luminosity required;

• strategies depend on itermediate discoveries;

• more sophisticated techniques available by then.


