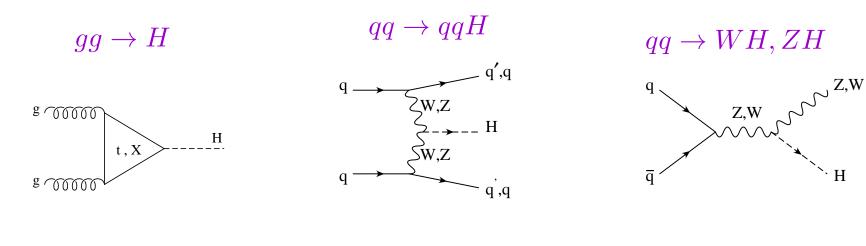
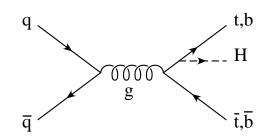
Higgs Boson Phenomenology Lecture III

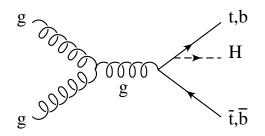
Laura Reina

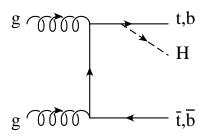
TASI 2011, CU-Boulder, June 2011

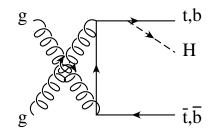

Outline of Lecture III

- Looking for a SM Higgs boson at hadron colliders:
 - \longrightarrow parton level production processes;
 - \rightarrow Tevatron Higgs physics program;
 - \rightarrow LHC Higgs physics program.
- Structure of hadronic processes: most important building blocks.

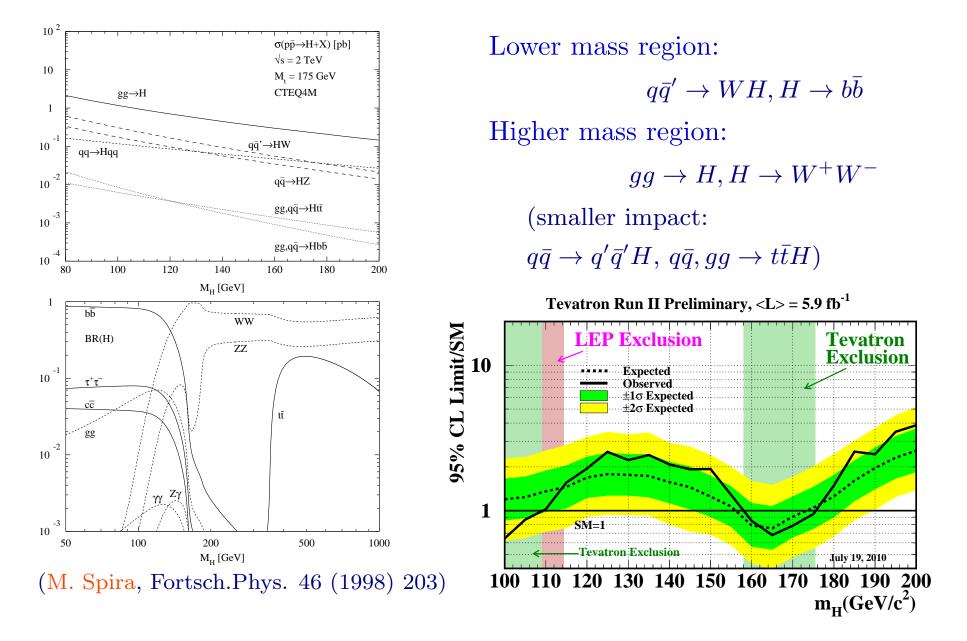

 $(\hookrightarrow \text{ see John Campbell's lectures})$

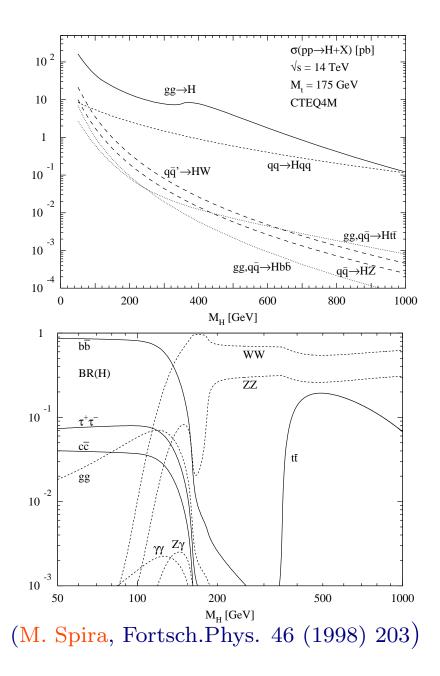

- How can a theorist do a good job?
 - \longrightarrow understand hadronic environment;
 - \rightarrow understand experimental measurements;
 - \rightarrow understand the systematic of the theoretical errors.
- Examples from Higgs physics:
 - $\longrightarrow gg \rightarrow H$: a tutorial in itself!
 - \rightarrow overview of inclusive theoretical predictions;
 - \longrightarrow ongoing studies for exclusive channels.
- What we haven't discussed ...


$p\bar{p}, pp$ colliders: SM Higgs production modes



 $q\bar{q}, gg \to t\bar{t}H, b\bar{b}H$

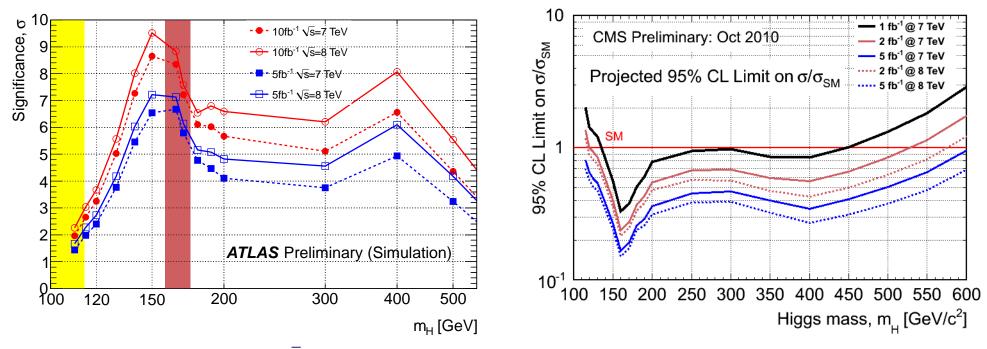




Tevatron: great potential for a light SM-like Higgs boson

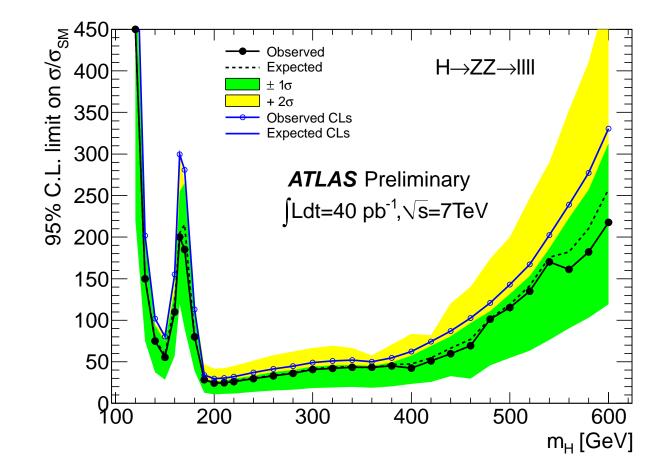
 \hookrightarrow Exclusion region very important for LHC search strategies.

LHC: entire SM Higgs-boson mass range accessible

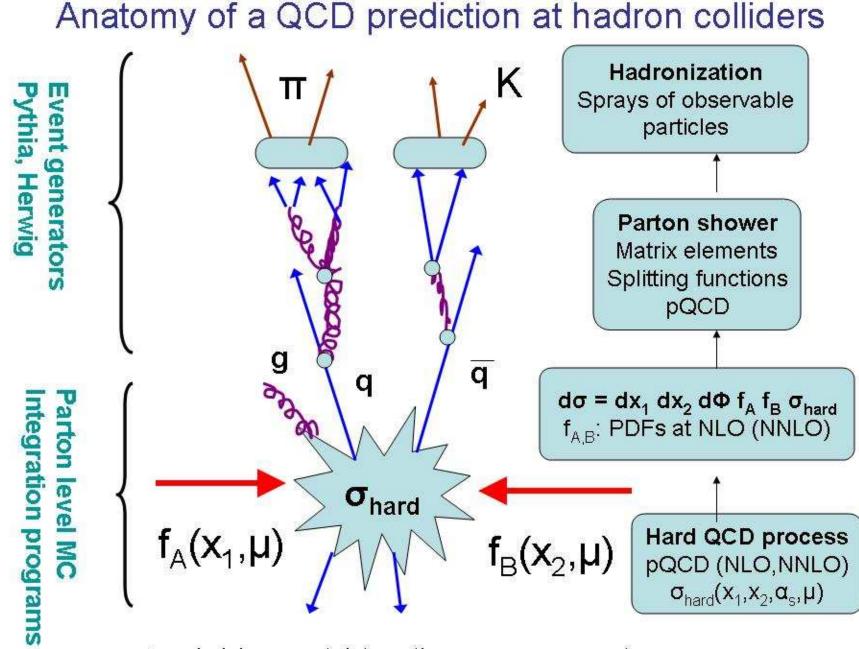

Many channels have been studied: Below 130-140 GeV: $gg \rightarrow H, H \rightarrow \gamma\gamma, WW, ZZ$ $qq \rightarrow qqH, H \rightarrow \gamma\gamma, WW, ZZ, \tau\tau$ $q\bar{q}, gg \rightarrow t\bar{t}H, H \rightarrow \gamma\gamma, b\bar{b}, \tau\tau$ $q\bar{q}' \rightarrow WH, H \rightarrow \gamma\gamma, b\bar{b}$

Above 130-140 GeV: $gg \rightarrow H, H \rightarrow WW, ZZ$ $qq \rightarrow qqH, H \rightarrow \gamma\gamma, WW, ZZ$ $q\bar{q}, gg \rightarrow t\bar{t}H, H \rightarrow \gamma\gamma, WW$ $q\bar{q}' \rightarrow WH, H \rightarrow WW$

With $\sqrt{s} = 7$ TeV and a few fb⁻¹...


Combining only $H \to W^+W^-$, $H \to ZZ$, $H \to \gamma\gamma$, ATLAS and CMS indicate that,

- if no signal, the SM Higgs can be excluded up to 500 GeV;
- a 5σ significance for a SM Higgs in the 140 170 GeV mass range;
- in the low mass region (\leftrightarrow new strategies, new ideas).



where also $WH, H \to b\bar{b}$ (highly boosted) and VBF with $H \to \tau\tau$ were used.

Data!

 \hookrightarrow see talks by John Conway (CMS) and Chris Lester (ATLAS).

+ underlying event, interactions among remnants

Schematically ...

The hard cross section is calculated perturbatively

$$\hat{\sigma}(ij \to X) = \alpha_s^k \sum_{m=0}^n \hat{\sigma}_{ij}^{(m)} \alpha_s^m$$

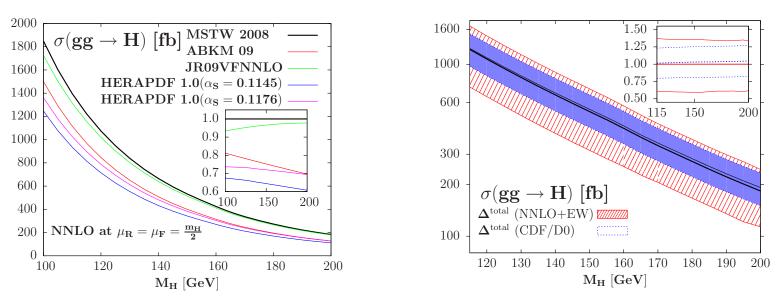
n=0: Leading Order (LO), or tree level or Born level n=1: Next to Leading Order (NLO), include $O(\alpha_s)$ corrections

and convoluted with initial state parton densities at the same order.

Renormalization and factorization scale dependence left at any fixed order. Setting $\mu_R = \mu_F = \mu$:

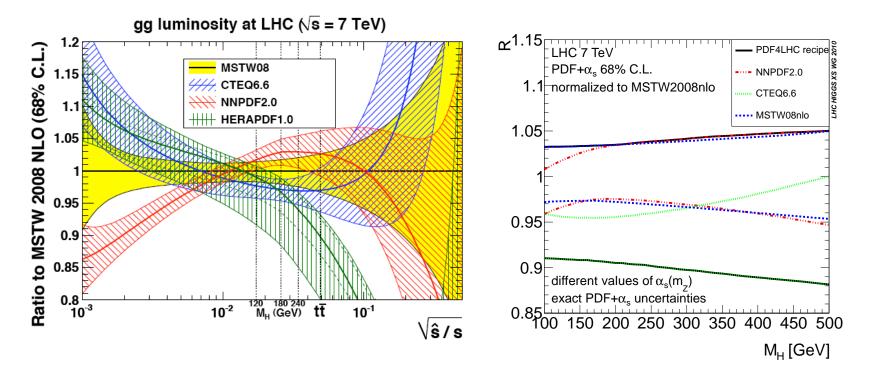
$$\sigma(pp, p\bar{p} \to X) = \sum_{ij} \int dx_1 dx_2 f_i^p(x_1, \mu) f_j^{p, \bar{p}}(x_2, \mu) \sum_{m=0}^n \hat{\sigma}_{ij}^{(m)}(\mu, Q^2) \alpha_s^{m+k}(\mu)$$

Systematic theoretical error from:


- \triangleright PDF and $\alpha_s(\mu)$;
- \triangleright left over scale dependence;
- ▶ input parameters.

Systematic error from PDFs: need care ...

Several PDF sets (CTEQ, MSTW, NNPDF, ...) allow to estimate the error from α_s and error obtained by varying the inputs used in the PDF fit within their experimental error.


However: results obtained using different sets of PDF differ by much more than the respective internal errors \longrightarrow difference from parametrization

Example: Tevatron bound has been questioned with the claim that the error from PDF's has been largely underestimated

(Baglio, Djouadi, Ferrag, Godbole, arXiv:1101.1832)

PDF4LHC: problem carefully studies for LHC physics

(Forte, Huston, Mazumdar, Thorne, Vicini, arXiv:1101.0593)

- NLO: use sets that perform a global fit to all available collider data: CTEQ(6.6), MSTW(2008), NNPDF(2.0). Estimate the error from PDF using the envelope prescription.
- NNLO: use MSTW(2008), normalized to a more conservative error i.e. multiplied by (NLO envelope error/NLO MSTW2008 error).

Hard cross sections: pushing the loop order, why?

- Stability and predictivity of theoretical results, since less sensitivity to unphysical renormalization/factorization scales. First reliable normalization of total cross-sections and distributions.
- Physics richness: more channels and more partons in final state, i.e. more structure to better model (in perturbative region):
 - \longrightarrow differential cross-sections, exclusive observables;
 - \longrightarrow jet formation/merging and hadronization;
 - \longrightarrow initial state radiation.
- First step towards matching with algorithms that resum particular sets of large corrections in the perturbative expansion:
 - \rightarrow resummed calculations (e.g. soft/collinear logs, kinematic logs); \rightarrow parton shower Monte Carlo programs (e.g. PYTHIA, HERWIG).

NLO: challenges have largely been faced and enormous progress has been made

- several independent codes based on traditional FD's approach
- several NLO processes collected and viable in MFCM (→ interfaced with FROOT) [Campbell, Ellis]
- Enormous progress towards automation:
 - \rightarrow Virtual corrections: new techniques based on unitarity methods and recursion relations
 - BlackHat [Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre]
 - ▷ Rocket [Ellis, Giele, Kunszt, Melnikov, Zanderighi]
 - HELAC+CutTools,Samurai [Bevilacqua, Czakon, van Harmeren, Papadopoulos, Pittau,Worek; Mastrolia, Ossola, Reiter, Tramontano]
 - \rightarrow Real corrections: based on Catani-Seymour Dipole subtraction or FKS subtraction
 - ▷ Sherpa [Gleisberg, Krauss]
 - ▷ Madgraph (AutoDipole) [Hasegawa, Moch, Uwer]
 - ▷ Madgraph (MadDipole) [Frederix, Gehrmann, Greiner]
 - ▷ Madgraph (MadFKS) [Frederix, Frixione, Maltoni, Stelzer]

- virtual+real:
 - MadLoop+MadFKS [Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau]
- interface to parton shower well advanced:
 - ▷ MC@NLO [Frixione, Webber, Nason, Frederix, Maltoni, Stelzer]
 - ▷ POWHEG [Nason, Oleari, Alioli, Re]

When is NLO not enough?

- When NLO corrections are large, to tests the convergence of the perturbative expansion. This may happen when:
 - \rightarrow processes involve multiple scales, leading to large logarithms of the ratio(s) of scales;
 - $\rightarrow\,$ new parton level subprocesses first appear at NLO;
 - $\rightarrow\,$ new dynamics first appear at NLO;
 - $\rightarrow \ldots$
- When truly high precision is needed (very often the case!).
- When a really reliable error estimate is needed.

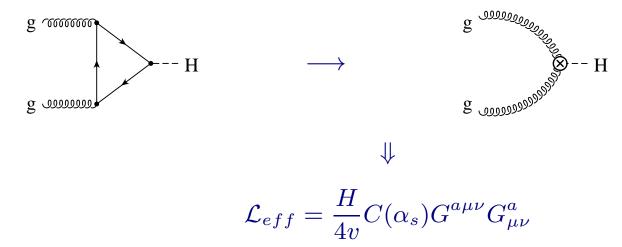
Important questions arise when interpreting data ...

- Should the factorization/renormalization scales be varied separately or together?
- How are these higher order predictions related to the LO event generators that one most often uses?
- How to deal with higher order differential distributions?
- Using NLO (NNLO) calculations to provide best LO (NLO) estimates for multi-parton final states: best scale choice? impact of jet algorithm choice?
- What is the impact of jet vetoing on the theoretical uncertainty for a signal/background cross section?
- What theory uncertainties should be included as acceptance uncertainties when setting limits on a cross section?
- Many more!

No unique or simple answer . . . Some guiding principles:

- reduce the dependence on unphysical scales (renorm./fact. scale);
- have the perturbative expansion of physical observables (inclusive σ , distributions, ...) to show a well behaved convergence.

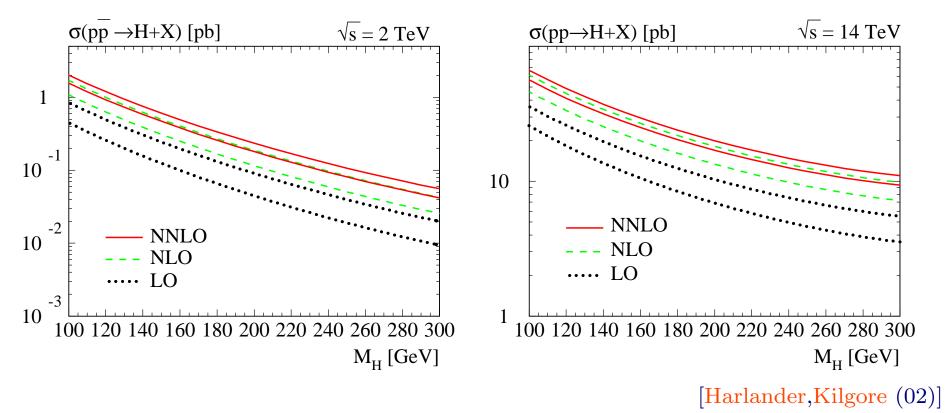
Several possible steps:


- add enough higher order corrections (NLO, NNLO) till: scale dependence improves, no large next-order corrections expected;
- look for recurrent large contributions that may spoil convergence;
- find the best expansion parameter (α_s , α_s times large logarithms, ...);
- using scaling properties, resum large scale dependent corrections;
- find the best choice of unphysical scales to avoid generating large logarithmic corrections at all orders;
- study the effect of cuts and vetos.

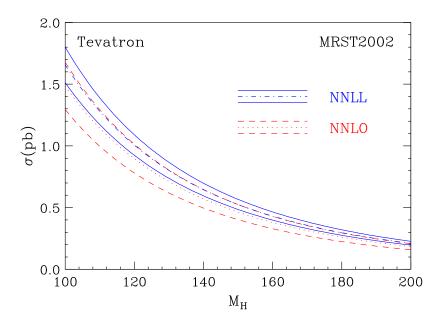
<u>A tutorial</u>: $gg \to H$, main production mode ... large K-factors, scale dependence, resummations, and more.

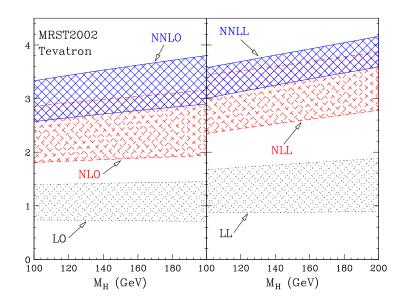
NLO QCD corrections calculated <u>exactly</u> and in the $\underline{m_t \to \infty}$ limit: perfect agreement even for $M_H >> m_t$.

Dominant soft dynamics do not resolve the Higgs boson coupling to gluons


 \Downarrow

where, including NLO and NNLO QCD corrections:

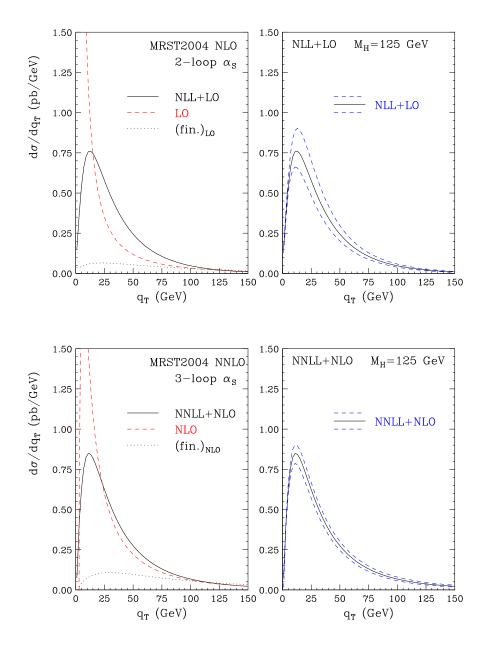

$$C(\alpha_s) = \frac{1}{3} \frac{\alpha_s}{\pi} \left[1 + c_1 \frac{\alpha_s}{\pi} + c_2 \left(\frac{\alpha_s}{\pi} \right)^2 + \cdots \right]$$


Fixed order NNLO:

- very large corrections in going $LO \rightarrow NLO$ (K=1.7-1.9) $\rightarrow NNLO$ (K=2-2.2);
- perturbative convergence $LO \rightarrow NLO (70\%) \rightarrow NNLO (30\%)$: residual 15% theoretical uncertainty.
- Tevatron case: still some tension.

Resumming effects of soft radiation ...

[Catani,de Florian,Grazzini,Nason(03)]


Theoretical uncertainty reduced to:

- $\rightarrow \simeq 10\%$ perturbative uncertainty, including the $m_t \rightarrow \infty$ approximation.
- $\rightarrow \simeq 10\%$ (estimated) from NNLO PDF's (now existing!).

But ... let us remember that: going from MRST2002 to MSTW2008 greatly affected the Tevatron/LHC cross section: from 9%/30% ($M_H = 115$ GeV) to -9%/+9% ($M_H = 200/300$ GeV) !

[De Florian, Grazzini (09)]

Resumming effects of soft radiation for q_T^H spectrum ...

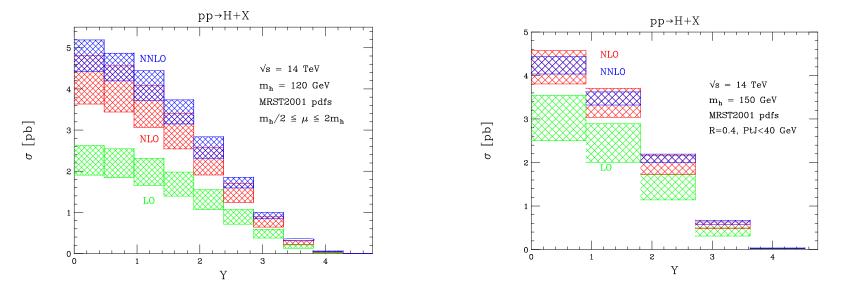
large $q_T \xrightarrow{q_T > M_H}$ perturbative expansion in $\alpha_s(\mu)$

small $q_T \xrightarrow{q_T \ll M_H}$ need to resum large $\ln(M_H^2/q_T^2)$

residual uncertainty:

LO-NLL: 15-20%

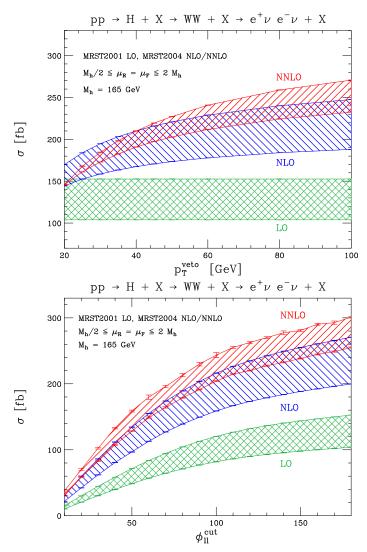
NLO-NNLL: 8-20%

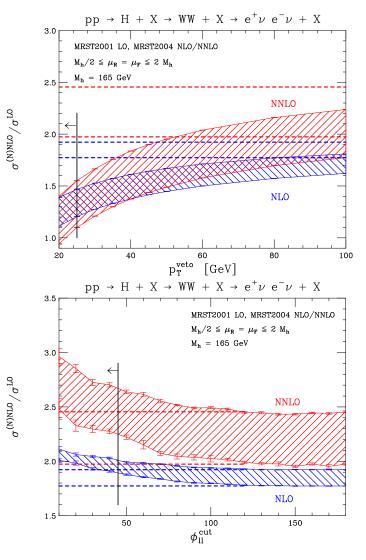

[Bozzi,Catani,De Florian,Grazzini (04-08)]

Exclusive NNLO results: $gg \rightarrow H, H \rightarrow \gamma\gamma, WW, ZZ$

Extension of (IR safe) subtraction method to NNLO

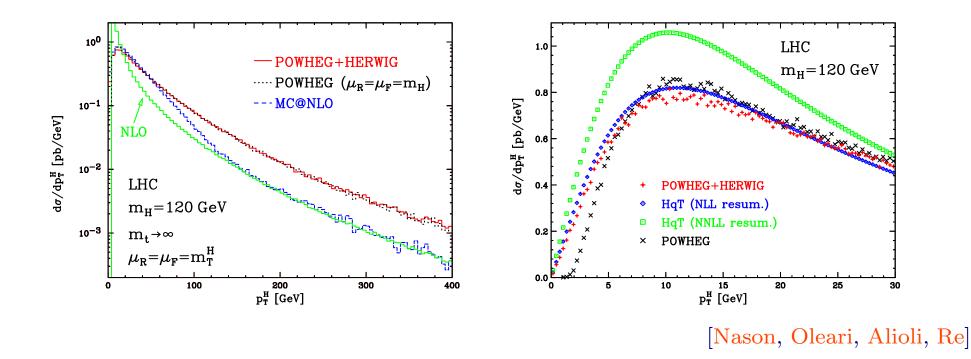
- \longrightarrow HNNLO[Catani, Grazzini (05)]
- \longrightarrow FEHiP [Anastasiou, Melnikov, Petriello (05)]

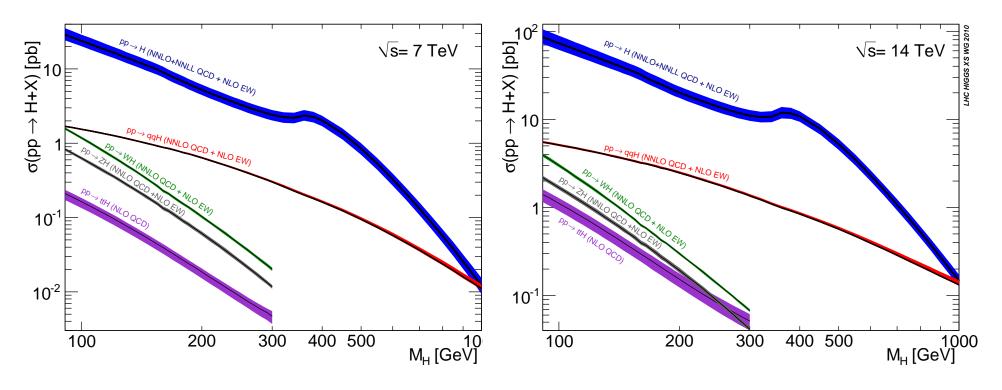

Essential tools to reliably implement experimental cuts/vetos.



[Anastasiou, Melnikov, Petriello (05)]

jet veto (to enhance $H \to WW$ signal with respect to $t\bar{t}$ background) seems to improve perturbative stability of y-distribution \longrightarrow jet veto is removing non-NNLO contributions. Full fledged $(gg \rightarrow)H \rightarrow W^+W^- \rightarrow l^+\nu l^-\bar{\nu}$


The magnitude of higher order corrections varies significantly with the signal selection cuts.


[Anastasiou, Dissertori, Stöckli (07)]

$gg \rightarrow H$ implemented in MC@NLO and POWHEG

- \rightarrow general good agreement with PYTHIA;
- \rightarrow comparison MC@NLO vs POWHEG understood;
- $\rightarrow\,$ comparison with resummed NLL results under control.
- \rightarrow rescale effects using NNLL/NLL knowledge.

Inclusive SM Higgs Production: theoretical predictions and their uncertainty

(LHC Higgs Cross Sections Working Group, arXiv:1101.0593 \rightarrow CERN Yellow Book)

- all orders of calculated higher orders corrections included (tested with all existing calculations);
- theory errors (scales, PDF, α_s , ...) combined according to common recipe.
- Exclusive observables: started in 2011.

References

Higgs process	$\sigma_{NLO,NNLO,NNLL,EW}$
gg ightarrow H	 S.Dawson, NPB 359 (1991), A.Djouadi, M.Spira, P.Zerwas, PLB 264 (1991) C.J.Glosser et al., JHEP (2002); V.Ravindran et al., NPB 634 (2002) D. de Florian et al., PRL 82 (1999) R.Harlander, W.Kilgore, PRL 88 (2002) (NNLO) C.Anastasiou, K.Melnikov, NPB 646 (2002) (NNLO) V.Ravindran et al., NPB 665 (2003) (NNLO) S.Catani et al. JHEP 0307 (2003) (NNLL) G.Bozzi et al., PLB 564 (2003), NPB 737 (2006) (NNLL) C.Anastasiou, R.Boughezal, F.Petriello, JHEP (2008) (QCD+EW)
$q\bar{q} \rightarrow (W,Z)H$	T.Han, S.Willenbrock, PLB 273 (1991) M.L.Ciccolini, S.Dittmaier, and M.Krämer (2003) (EW) O.Brien, A.Djouadi, R.Harlander, PLB 579 (2004) (NNLO)
$q\bar{q} ightarrow q\bar{q}H$	T.Han, G.Valencia, S.Willenbrock, PRL 69 (1992) T.Figy, C.Oleari, D.Zeppenfeld, PRD 68 (2003) M.L.Ciccolini, A.Denner, S.Dittmaier (2008) (QCD+EW) P.Bolzoni, F.Maltoni, S.O.Moch, and M.Zaro (2010) (NNLO)
$q\bar{q}, gg \to t\bar{t}H$	W.Beenakker <i>et al.</i> , PRL 87 (2001), NPB 653 (2003) S.Dawson <i>et al.</i> , PRL 87 (2001), PRD 65 (2002), PRD 67,68 (2003)

Towards exclusive studies: including decays, cuts, jet vetos, backgrounds, ...

- Obtain distibutions from NLO/NNLO/NNLL calculations.
- Study the impact of higher order corrections in the presence of cuts, jet vetos, etc.
- If cuts imposed on decay products, need to include decays and estimate higher order corrections to the new process
 - high multiplicity of final state makes calculation more involved (very few NLO calculations exist)
 - new NLO tools may allow fast progress.
- Interface with NLO Monte Carlo would be best:
 - MC@NLO: $gg \rightarrow H, W/ZH$;
 - POWHEG: $gg \to H, q\bar{q}'H$.
- Backgrounds need to be calculated with comparable accuracy.

Recently completed NLO calculations: most are relevant backgrounds to Higgs-boson physics!

Process $(V \in \{Z, W, \gamma\})$	Calculated by
$pp \rightarrow V+2 \text{ jets}(b)$	Campbell,Ellis,Maltoni,Willenbrock (06)
$pp \rightarrow V b \bar{b}$	Febres Cordero, Reina, Wackeroth (07-08)
$pp \to W b \bar{b}$	Campbell,Ellis (10)
$pp \rightarrow VV + jet$	Dittmaier, Kallweit, Uwer $(WW+jet)$ (07)
	Campbell, Ellis, Zanderighi (WW +jet+decay) (07)
	Binoth,Karg,Kauer,Sanguinetti (09)
$pp \rightarrow VV + 2$ jets	Bozzi, Jäger, Oleari, Zeppenfeld (via WBF) (06-07)
$pp \rightarrow VVV$	Lazopoulos, Melnikov, Petriello (ZZZ) (07)
	Binoth, Ossola, Papadopoulos, Pittau (WWZ, WZZ, WWW) (08)
	Hankele, Zeppenfeld ($WWZ \rightarrow 6$ leptons, full spin correlation) (07)
$pp \rightarrow H+2$ jets	Campbell, Ellis, Zanderighi (NLO QCD to gg channel) (06)
	Ciccolini, Denner, Dittmaier (NLO QCD+EW to WBF channel) (07)
$pp \rightarrow H+3$ jets	Figy, Hankele, Zeppenfeld (large N_c) (07)
$pp \rightarrow t\bar{t} + \text{jet}$	Dittmaier, Uwer, Weinzierl (07), Ellis, Giele, Kunszt (08)
$pp \to t\bar{t}Z$	Lazopoulos, Melnikov, Petriello (08)
$gg \to WW$	Binoth, Ciccolini, Kauer, Kramer (06)
$gg \rightarrow HH, HHH$	Binoth,Karg,Kauer,Rückl (06)
$pp ightarrow t ar{t} b ar{b}$	Bredenstein et al., Bevilacqua et al. (09)
$pp \rightarrow V + 3 \text{jets}$	Berger et al., Ellis et al. (09)
$pp \rightarrow W + 4 \text{jets}$	Berger et al. (10)

We have not disscussed: study of Higgs properties At the LHC:

- Color and charge will be given by the measurement of a given (production+decay) channel.
- The Higgs boson mass will be measured with 0.1% accuracy in $H \to ZZ^* \to 4l^{\pm}$, complemented by $H \to \gamma\gamma$ in the low mass region. Above $M_H \simeq 400$ GeV precision deteriorates to $\simeq 1\%$ (lower rates).
- The Higgs boson width can be measured in $H \to ZZ^* \to 4l^{\pm}$ above $M_H \simeq 200$ GeV. The best accuracy of $\simeq 5\%$ is reached for $M_H \simeq 400$ GeV.
- The Higgs boson spin could be measured through angular correlations between fermions in $H \rightarrow VV \rightarrow 4f$: need for really high statistics.
- The Higgs boson couplings will be measured combining multiple channels:

$$(\sigma_p(H)\mathrm{Br}(H \to dd))^{exp} = \frac{\sigma_p^{th}(H)}{\Gamma_p^{th}} \frac{\Gamma_d \Gamma_p}{\Gamma_H}$$

Higgs self-couplings will be very hard!

Conclusions and Outlook

- We are living through a new era in Higgs boson physics: looking for direct evidence.
- SM Higgs boson precision physics has given a first coherent set of predictions for inclusive observables: Higgs boson production cross sections and branching ratios.
- <u>Short term</u>: study exclusive observables, including decays, background processes, and experimental cuts.
- <u>Long term</u>: the LHC can carry through a precision program that also include measurements of Higgs boson properties, to identify it:
 - high luminosity required;
 - strategies depend on itermediate discoveries;
 - more sophisticated techniques available by then.