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ABSTRACT

This thesis covers comparison studies for the Shashlik calorimeter, one of three possible electromag-

netic calorimeter (ECAL) upgrades for the CMS detector at CERN. Currently, the lead tungstate

crystals are doing very well; however, when the LHC will increase the total integrated luminosity,

the crystals in the forward end-cap will eventually become severely damaged from radiation, which

is why scientists are investigating possible replacements.

The methods used involved developing a Particle Flow algorithm, in hopes of getting better

results and increased accuracy when the number of interactions per proton bunch crossing (instan-

taneous luminosity) increases from 30 to 140. The Particle Flow algorithm could give improvement

on the resolution in the high intensity environment compared to simpler algorithms.

The Particle Flow algorithm being tested is still under development. Comparisons between

three different clustering algorithms for the simplest case of electrons are presented. Initial studies

of pions are also shown. The resolution for electrons is found to be around 6-8% for energies greater

than 200 GeV.
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CHAPTER 1

BACKGROUND INFORMATION

The main motivation for this thesis is to study a promising technique that could mitigate a major

challenge faced by the CMS collaboration in the coming decade. During the initial operations

period (2010 - 2012), the CMS electromagnetic calorimeter (ECAL) performed very well (note the

discovery of the Higgs boson in 2012 as an example [1]); but with the planned increase in lumi-

nosity (two orders of magnitude), parts of the current ECAL crystals (PbWO4) will be damaged.

The increased instantaneous luminosity will mean a larger number of interactions per recorded

event. Reconstruction algorithms will have to sort through this information to learn about the one

interaction per bunch crossing of interest.

1.1 The CMS Detector

The CMS detector is one of the two, large general purpose detectors at the Large Hadron

Collider (LHC) at CERN. There are five layers of different detectors (Fig. 1.1): the silicon tracker,

the electromagnetic calorimeter, the hadronic calorimeter, the superconducting solenoid, and the

muon system. These studies rely primarily on the electromagnetic and hadronic calorimeters, as

they are the only ones included in the simulations. Each of these components are either located in

the ”barrel” section, which forms the lateral section of the cylinder, or in the ”end-caps”, which

close off the cylinder, perpendicular to the beam line. The end-caps are the primary area of interest

in our studies (Fig. 1.2).

Electromagnetic Calorimeter

The current ECAL is constructed of lead tungstate (PbWO4) crystals. These crystals are

extremely dense, yet optically clear, and make an excellent scintillator, which is the primary means

of detection [2]. When electrons and photons pass through the crystals, they interact with the

atoms – either with elastic/inelastic scattering or with bremsstrahlung – resulting with bursts of

light that are proportional to the original particle’s energy [3].
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Figure 1.1: A cross section of the CMS detector showing all of the different components of the
detector.

Hadronic Calorimeter

The HCAL is very similar to the ECAL, except its purpose is measuring the energy deposited

by hadrons. The HCAL consists of layers of dense material, either brass or steel, interweaved with

plastic scintillators. The readout detectors are hybrid photodiodes, using wavelength-shifting fibers

to measure the small electric signals [4].
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Figure 1.2: Cut out view of the CMS detector. The region inside the blue circle is the forward
end-cap.

1.2 The Shashlik Calorimeter

The Shashlik Calorimeter is one of the proposed upgrades for the ECAL, and the primary one

investigated by the Forward Calorimetry group at FSU. This new calorimeter is comprised of many

layers, alternating between an absorber and an active scintillating piece, with optical fibers running

perpendicular to the layers for proper readout against the absorber’s opacity (Fig. 1.3) [5].
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Figure 1.3: Diagram of the proposed Shashlik calorimeter.

The absorber will be either lead or tungsten that absorbs some of the energy from the passing

particles. This allows the calorimeter to be more radiation resistant as well as more cost effective.

The scintillating layers are made of LY SO, Cerium-doped Lutetium Yttrium Orthosilicate, crystals

that scintillate with the passage of charged particles. Again, like the current ECAL, charged

particles passing through the scintillator will ionize some of the atoms in the crystal, creating a

shower of photons. The light is proportional to the energy deposited by the original particle. These

studies use the WLY SO simulations, which incorporate LY SO crystals with tungsten absorbers

[6].
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1.3 Simulations

The simulations use GEANT4 [7] to produce the shell of the CMS detector. It creates the

detector space and only includes the ECAL and HCAL. Within this detector space, we simulate

some of the possible products of a collision and how they interact with the calorimeters, not

the actual collisions themselves. The three different particles we model include: electrons, π−,

and jets. All three of these types are generated with Pythia [8], using various energies and η,

a type of angle measurement shown below (Eq. 1.1), over the range: 10 - 1000 GeV, and 1.6 -

2.8, respectively. GEANT4 models the stochastic processes when the particles decay and interact

within the calorimeter.

η ≡ − ln

(
tan

θ

2

)
(1.1)

where θ is the angle measured from the beam line that the particles are oriented along. Once

these simulations are run, we have saved certain information about the particles within our area

of interest. We are only working with the end-cap, so any particles that do not end up reaching

the front face of the ECAL will be useless. Therefore, we only keep track of particles that have a

positive momentum in the ẑ direction. We store the following information per individual particle:

momentum in all three dimensions, initial vertex position, and particle identification number in

Particle Data Group (PDG) code (a way to identify different particles) [9].

We use a square grid within the ECAL composed of 10000 cells in a 100x100 matrix. Each

cell is a square of width 1.4 (1.9) cm for tungsten (lead) absorber. The grid is positioned for each

particle/energy/eta combination such that the particle under study will impact the ECAL near the

center of the grid. The information we store about this grid include: energy depositions in each

cell, and its x and y offset in the detector space (center of ECAL at origin).
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CHAPTER 2

METHODS

The primary components developed to study aspects of a Particle Flow-like algorithm include: code

that tracks the propagation of particles within the detector, energy deposition clustering programs,

and macros that match energy clusters with particles tracked to the respective calorimeters.

2.1 Particle Tracking

Tracking of the particles before they enter the calorimeter is straightforward. The assumptions

that are used include: the magnetic field is constant and lies along the z-axis within the detector,

the electric field is zero in the space of interest, and the particles are traveling through a vacuum

before hitting the ECAL front face. Under these assumptions, the x and y position of a particle is

given by,

Charged Particles:

x = x0 +
py0
qB0

− py0
qB0

cos

(
qB0

γpz0
(z − z0)

)
+
px0
qB0

sin

(
qB0

γpz0
(z − z0)

)
(2.1)

y = y0 −
px0
qB0

+
px0
qB0

cos

(
qB0

γpz0
(z − z0)

)
+
py0
qB0

sin

(
qB0

γpz0
(z − z0)

)
(2.2)

Neutral Particles:

x = x0 +

(
px0
pz0

)
(z − z0) (2.3)

y = y0 +

(
py0
pz0

)
(z − z0) (2.4)

where z is the distance along the z axis as measured from the origin, B0 is the magnetic field

strength within the detector, x0, y0, and z0 are the initial positions of the vertex in the i dimension,

q is the charge of the particle, pi0 (i = x, y, z) is the initial momentum of the particle in three
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dimensions, and γ is the relativistic factor which can be determined from the momentum. The

derivation of this result can be found in Appendix A [10].

2.2 Energy Deposition Clustering

The clustering algorithms were developed by another member of the FSU CMS group. There

are three different methods: 5x5 linear energy weighted, 5x5 log energy weighted, and particle flow

clusters.

2.2.1 5x5 energy weighted

The 5x5 energy weighted clustering algorithm is the more straight-forward approach to clus-

tering energy depositions. The basic logic organizes energy depositions in terms of seeds. These

are the local maxima in the energy deposits in the calorimeters. It starts at the highest energy

seed, and then branches outwards searching for other local maxima. Specific criteria are applied to

determine if an energy deposition can be a seed: it is a local maximum within the vicinity of the 8

adjacent cells forming a 3x3 matrix of cells, and it is above a certain threshold of energy. It loops

over the entire energy distribution, labeling every seed. Once this is done, it starts back at the

original seed and creates clusters. These clusters include, at maximum, 25 cells in a 5x5 matrix.

As the algorithm continues forward, if a cluster realizes there is another seed inside the cluster it is

producing, that cell will not be included. Therefore, you could have an odd shaped cluster towards

the end of the program, that may only have 9 cells in it.

For each cluster, the total energy and position of the cluster is calculated using the cells asso-

ciated with the cluster. The energy is calculated by summing the energy in each cell within the

cluster.

Two different techniques are used to calculate the position of the 5x5 cluster: a linear weighted

method weighted with the energies of each cell, and a log weighted method that smoothes out the

energy weights.

Linear weighted. This is the simpler method. We know the size of the individual cells, so

we can use it as a grid in determining position. This method uses the ratio of the specific cell

energy to the energy of the entire cluster as a weighting method, shown below in equation 2.5. You
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simply loop over all of the clustered cells with this weighting process and add up the positions of

these cells.

xcluster =
N−1∑
n=0

Eclustercells
Ecluster

xclustercells (2.5)

where xcluster is the position of the 5x5 cluster in the x direction, n is the number of cells in the

cluster, N is the total number of cluster cells, Eclustercells is the energy deposited into individual

cells, Ecluster is the energy associated with this cluster, and xclustercells is the position of the cluster

cells (each is 1.4 cm wide). A corresponding equation is used to determine the position along the

y axis.

Log weighted. The log weighted method is similar. It repeats the process of summing the

cell’s position with a certain weight attached. However, the weight changes slightly in this case

– the final position is determined by normalizing the position with a total summed weight. This

method is shown below in equation 2.6.

xcluster =
1

w

N−1∑
n=0

(
4.2− ln

∣∣∣∣EclustercellsEcluster

∣∣∣∣)xclustercells (2.6)

where w is the total summed weight you use to normalize,

w ≡
N−1∑
n=0

(
4.2− ln

∣∣∣∣EclustercellsEcluster

∣∣∣∣)

2.2.2 Particle Flow clusters

The Particle Flow clusters use a more elegant approach to clustering the energy depositions

in the calorimeters. The topological clustering starts with the maximum energy value in the

calorimeter, then does a systematic walk around the detector face, checking if the cells pass a

certain energy threshold. Once the program comes across a cell under the threshold, it changes

direction until it discovers another region below the threshold. This process continues until it maps

out a wide area in which to make a Particle Flow cluster. It repeats this process if there is another

seed, or local maximum above a certain threshold, in a region outside of the first topological cluster.
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The program repeats this until all seeds are accounted for (Note: most seeds will be within the

same topological cluster).

Once the topological clusters are mapped out, the program starts developing the Particle Flow

clusters. Each seed gets a Particle Flow cluster that is the same size and shape as the topological

cluster it belongs to, in terms of cells. The clustering program puts a bias on cell energies closer to

the seed than those further away. Therefore, although each Particle Flow cluster will cluster the

same cells, each seed’s energy distribution will be different.
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2.3 Matching Algorithms

The analysis involves using root macros that combine both the clustering algorithms and the

particle tracking code. The goal is to be able to reconstruct accurate energies, as well as match the

positions between the clusters and the tracked particles.

The analysis started relatively simple – with electrons. For this case, the ECAL is the main

calorimeter of interest. The two quantities studied were: the difference between the transverse

radial distance for the calculated track and the cluster (∆r), and the difference between the initial

energy of the particle and the reconstructed energy of the cluster (∆E). Another useful study

for this phase is to get a rough estimate of the resolution of the ECAL. One can do this only for

electrons with energy < 1000 GeV, as it will guarantee all of the particle’s energy will be deposited

only in the ECAL.

In analyzing the differences between the radial distance, the algorithm follows some relatively

simple steps which include:

• Calculate transverse position (xtrack and ytrack) for the particle’s theoretical trajectory to the

front face of the ECAL,

• Calculate transverse position (xcluster and ycluster) for the cluster positions with,

−→r cluster = −→r grid +−→r offset

where −→r grid is the position within the 100x100 matrix space for both x and y, and −→r offset
is how far that grid is displaced from the origin for x and y.

• Calculate ∆r with the following equation,

∆r =

√
(xtrack − xcluster)2 + (ytrack − ycluster)2

• Run an optimization loop over all of the clusters to determine which cluster gives the smallest

∆r. Once determined, the cluster number is recorded and stored .

In determining the differences in energy, a similar process is followed.

• Calculate the generated energy the particle should produce with the scalar product of its

4-momentum vector,

Egenerated =
√
p2 +m2

where p is the relativistic momentum in the ith direction (i = x, y, z), and m is the particle’s

mass.
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• Calculate the energy of the cluster associated with the closest particle match by looping over

the cells that are in that cluster.

• Calculate ∆E with

∆E = Egenerated − Ecluster

To determine the resolution of the ECAL, we do the following:

• Determine the standard deviation of the reconstructed energies from the clusters by using

a Gaussian fit to the histograms of the energy distribution. Some examples of the fits are

shown (Fig. 2.1).

• Create a table of data points for the resolution. The formula is σ/E so once the standard

deviation is obtained, divide by the mean energy.

• Use propagation of uncertainties to determine the error bars on the graph. For our equation,

σ/E, the following equation was used for the uncertainty,

σres =

√(
1

E
σσ

)2

+
( σ

E2
σE

)2
where σres is the uncertainty in the resolution, σσ is the uncertainty in the standard deviation,

and σE is the uncertainty in the mean of the energy.

• Fit the resolution graph with the proper form shown below. This is the equation the resolution

is modeled for sampling calorimeters, featuring a stochastic term, a noise term, and a constant

term.
σ

E
=

a√
E
⊕ b

E
⊕ c

where σ is the standard deviation of the distribution, a, b, and c are constants, and ⊕ refers

to quadratic summing [11]. The plot is shown in the Results section.
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Figure 2.1: Constructed energies of electrons at η = 2.0 with Gaussian fit
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CHAPTER 3

ANALYSIS

3.1 Visualization

The figures below show some plots illustrating the placement of the particles as they hit the

face of the ECAL. The figures display jets with various energies at the same η, and with the same

energy but with varying η. The visualizations for electrons and pions were much less interesting,

only consisting of a small region of impact.

Below in figure 3.1, the plots illustrate jets oriented at an η of 1.6 with varying energies. One

interesting thing that occurs is the jet splits into two bunches for lower energies, specifically from 50

- 200 GeV. For lower energy jets, the individual hadrons that form the jet have a lower momentum,

resulting in a smaller radius of curvature. Once the jets have high enough energy, the curving is

much less noticeable, resulting in one general impact location.

Another thing to note, for these lower energy jets, is the curving charged hadrons bend into

the vicinity of the beam line. This means nothing for the simulation since it just calculates the

position, but in reality, near the beam line there is no ECAL. This indicates that some energy will

be lost and unaccounted for in real data sets.

In the following plots, the contour coloring in the z direction represents the density of the number

of events occurring in that region.
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Figure 3.1: Contour plot of the position of the individual particles from jets at η = 1.6, with varying
energies.

14



Figure 3.2 shows a 50 GeV jet for different η. We know the definition to be related with the

angle above the beam line the particle hits the ECAL, with equation 1.1.

Because of this relation, as the η value gets smaller, the particle is oriented farther from the

beam line. Thus, as η gets larger, the main collision area moves closer to the center where the

beam line enters. This is shown in the figure well.
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Figure 3.2: Contour plot of the particles position on the front face of the ECAL, with varying η at
p = 50 GeV
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CHAPTER 4

RESULTS

4.1 Comparisons of Clustering programs

Among the three different clustering methods, studies were done comparing the accuracy of

matching to determine the best algorithm. Shown below is a good illustration of the differences

for the electron case (Fig. 4.1). The ∆r, which is a measure of how closely the tracks match with

the clusters, varies greatly between all three clustering methods. The energy differences seem to be

better for the Particle Flow clusters (the distribution is centered over zero).

There is a trade off between the three clustering algorithms. On one hand, the linear weighted

5x5 has an average ∆r of about 0.29 cm, as the log weighted 5x5 has an average ∆r of 0.57 cm,

both with a very narrow peak; conversely, the Particle Flow clusters have an average ∆r of about

0.84 cm but with a more widespread distribution. To investigate, consider the cases when the same

graphs vary with different energies, and η.

4.1.1 Linear Weighted 5x5:

For increasing energy at constant η (Fig. 4.2), the energy differences and ∆r seem to correlate

inversely: with increasing energy, ∆r narrows as ∆E widens.

For a really low energy, such as 10 GeV, the electron will curve a lot more than for a higher

energy electron. This curving will produce more uncertainty in the ∆r between the particle tracks

and clusters because the clusters are based off of the energy depositions – an electron with a large

radius of curvature that hits one cell, will leak into a neighboring cell because of the steep angle

of incidence. On the other hand, since the electron is going so slow, essentially all of its energy

will be deposited in the ECAL scintillating crystals. This is because there are enough interaction

lengths for the particle to interact almost 100% of the time, thus almost all of its energy can be

reconstructed.

Conversely, for faster particles, like 500 and 1000 GeV, the opposite is true. The curving will be

much less prevalent, resulting in better certainty in matching the clusters with the tracks; however,
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Figure 4.1: The three different clustering methods compared for a 200 GeV electron at an η = 2.0.
For each algorithm, the left plot shows ∆r while the right shows ∆E.

now that the particle is moving faster, it will travel through the scintillating and absorber parts

of the detector much quicker. This explains the shape of the energy distribution. The fractional

uncertainty of the energy differences show that it is relatively constant across all energies. For

example, an electron with 1000 GeV of momentum will have a larger difference than one at 10

GeV. If the ∆E is around 3%, then it would be around 30 GeV, and 0.3 GeV respectively.
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Figure 4.2: 5x5 linear weighted clustering method for electrons at η = 2.0, with varying energy.
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When the energy is held constant, and η is allowed to vary (Fig. 4.3), the ∆r seems to vary with

a constant term. Since the energy is constant, the width of the ∆r will be the same throughout, so

the variation, from 0.2 to 0.5 cm, has to deal with the angle the electron is hitting the crystal cells.
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Figure 4.3: 5x5 linear weighted clustering method for electrons at p = 200 GeV, with varying η.
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Figure 4.4 shows how the linear weighted 5x5 clustering method’s ∆r varies over the different

energies and η. As seen in the figure, peaks occur at 100 GeV and η = 2.2. Since the uncertain-

ties are relatively small for ∆r, this implies a significant anomaly in this regions for the clustering

method. However, since the electron is hitting in the same position each time, each event will result

in a similar ∆r, resulting in a smaller than expected spread.
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Figure 4.4: ∆r as a function of energy at η = 2.0 (left) and η at E = 200 GeV (right) for the linear
weighted 5x5 clustering algorithm. The uncertainties are determined from the RMS, or the width
of the distributions.
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4.1.2 Log Weighted 5x5:

Now looking at the log weighted 5x5 clustering for varying energy at constant η (Fig. 4.5),

there are similarities between this and the linear weighted clusters. The same patterns occur:

for low energy, ∆r is more widespread, with energy narrow, and as energy increases this trends

move in reverse (∆r narrows as ∆E widens); and ∆r reaches its highest value at 100 GeV. Another

interesting observation is that the ∆r average values seem to all be greater than the linear weighted

clusters by a constant value – mostly greater by around 0.3 cm, with two cases (50 and 1000 GeV)

where it is only 0.1 cm greater.

When energy is held constant, and η varies, the same patterns continue again (Fig. 4.6). The

∆r shoots up to its highest value at η = 2.2. The average ∆r value jumps around widely like above

for the linear weighted clusters, with values ranging from 0.3 cm to 1.2 cm. This again is most

likely due to the different angles of incidence.
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Figure 4.5: 5x5 log weighted clustering method for electrons at η = 2.0, with varying energy.
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Figure 4.6: 5x5 log weighted clustering method for electrons at p = 200 GeV, with varying η.
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Again, like the linear weighted clusters, there seem to be anomalies because of the small uncer-

tainties in ∆r (Fig. 4.7). This peculiarity will be discussed later on, after the case for the Particle

Flow clusters is shown.
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Figure 4.7: ∆r as a function of energy at η = 2.0 (left) and η at E = 200 GeV (right) for the log
weighted 5x5 clustering algorithm. The uncertainties are determined from the RMS, or the width
of the distributions.
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4.1.3 Particle Flow Clusters:

As opposed to the Linear weighted 5x5 clusters, the Particle Flow cluster distributions are more

consistent across different energies at constant η = 2.0 (Fig. 4.8). Although the ∆r distributions

are more widespread than the linear weighted clusters, an interesting observation is that most of

the peak is contained within the 1.4 cm that make up the crystal cell. There is a quick fall off

outside of this region. The average ∆r steadily increases with the energy, from about 0.65 cm to

1.5 cm. The actual peak of the ∆r distributions seem to correlate with those of the log weighted

5x5 clusters.

When varying the η with constant energy (200 GeV), the ∆r is very consistent (Fig 4.9). The

average ∆r values vary between 0.83 and 0.85 cm.

26



h1

Entries  2000

Mean   0.6519

RMS    0.3629

Delta­r (cm)

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

h1

Entries  2000

Mean   0.6519

RMS    0.3629

Delta­r between Clusters and Tracks h2

Entries  2000

Mean   ­0.5032

RMS    0.7205

Delta­E (GeV)

­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5
0

20

40

60

80

100

h2

Entries  2000

Mean   ­0.5032

RMS    0.7205

Delta­E between Clusters and Tracks

(a) p = 10 GeV

h1

Entries  2000

Mean   0.6728

RMS    0.3969

Delta­r (cm)

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

h1

Entries  2000

Mean   0.6728

RMS    0.3969

Delta­r between Clusters and Tracks h2

Entries  2000

Mean   ­0.2096

RMS    0.7824

Delta­E (GeV)

­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5
0

10

20

30

40

50

60

h2

Entries  2000

Mean   ­0.2096

RMS    0.7824

Delta­E between Clusters and Tracks

(b) p = 50 GeV

h1

Entries  2000

Mean   0.7321

RMS    0.4188

Delta­r (cm)

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

h1

Entries  2000

Mean   0.7321

RMS    0.4188

Delta­r between Clusters and Tracks h2

Entries  2000

Mean   ­0.2335

RMS     1.187

Delta­E (GeV)

­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

h2

Entries  2000

Mean   ­0.2335

RMS     1.187

Delta­E between Clusters and Tracks

(c) p = 100 GeV

h1

Entries  2000

Mean    0.837

RMS    0.4813

Delta­r (cm)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

h1

Entries  2000

Mean    0.837

RMS    0.4813

Delta­r between Clusters and Tracks h2

Entries  2000

Mean   0.1632

RMS      1.96

Delta­E (GeV)

­6 ­4 ­2 0 2 4 6 8 10
0

10

20

30

40

50

h2

Entries  2000

Mean   0.1632

RMS      1.96

Delta­E between Clusters and Tracks

(d) p = 200 GeV

h1

Entries  2000

Mean    1.092

RMS    0.6181

Delta­r (cm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

h1

Entries  2000

Mean    1.092

RMS    0.6181

Delta­r between Clusters and Tracks h2

Entries  2000

Mean    3.541

RMS     5.648

Delta­E (GeV)

­10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

h2

Entries  2000

Mean    3.541

RMS     5.648

Delta­E between Clusters and Tracks

(e) p = 500 GeV

h1

Entries  2000

Mean    1.543

RMS    0.8612

Delta­r (cm)

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

h1

Entries  2000

Mean    1.543

RMS    0.8612

Delta­r between Clusters and Tracks h2

Entries  2000

Mean    13.11

RMS     10.95

Delta­E (GeV)

­10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

h2

Entries  2000

Mean    13.11

RMS     10.95

Delta­E between Clusters and Tracks

(f) p = 1000 GeV

Figure 4.8: Particle Flow clustering method for electrons at η = 2.0, with varying energy.
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Figure 4.9: Particle Flow clustering method for electrons at p = 200 GeV, with varying η.
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Figure 4.10 shows how the Particle Flow clustering method’s ∆r varies over the different ener-

gies and η. As the figure illustrates, the Particle Flow clustering method is much more consistent,

showing no anomalies like the 5x5 clusters do.
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Figure 4.10: ∆r as a function of energy at η = 2.0 (left) and η at E = 200 GeV (right) for the
Particle Flow clustering algorithm. The uncertainties are determined from the RMS, or the width
of the distributions.
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4.1.4 Comparisons:

Although the linear weighted 5x5 clusters proved to have the smallest average ∆r values among

the three clustering methods, the shape and position of the peak raise some questions. This

seems to persist within the log weighted clusters as well. There are several possibilities that can

be investigated to explore these questions. There could be a bias due to systematic error when

calculating the position of the cluster’s centroid, possibly because the showering in the crystal has

a varying depth in which the interactions begin. There could also be a bias from the positioning

of the incident electron, as the simulations do not randomize the direction the electron travels and

thus the position on the front face of the ECAL when the electron begins to shower.

4.1.5 Pions in ECAL and HCAL:

The figures above give good insight into the efficiency of the methods used for electrons. Figure

4.11 illustrates an example of a meson.
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Figure 4.11: ∆r and ∆E (left to right) for a π− in both the ECAL and HCAL.
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4.2 Resolution

The electrons can be used to estimate the resolution of the ECAL. Using the techniques de-

scribed in the Methods section, a fit of the appropriate form was completed with the limited data

available from simulations (Fig. 4.12).
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Figure 4.12: Resolution of the ECAL with electrons only

From this graph and the fitting, one can determine the coefficients for the resolution form of

the detector, this is shown below:

σ

E
=

9.05%√
E
⊕ 8.43%

E
⊕ 0.61% (4.1)
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CHAPTER 5

CONCLUSION

The main purpose of this thesis was to investigate one of three possible electromagnetic calorimeter

upgrades for the CMS detector, the Shashlik calorimeter. Simulations were run with the new ECAL

in place at the end-cap of the detector. My contribution to the analysis and design studies of this

new calorimeter were in the form of studying a Particle Flow algorithm, which involves forming

energy deposition clusters and correlating each cluster to a specific particle in the event.

Three different clustering techniques were studied. All three clustering algorithms show merits

and disadvantages in their methods when implemented; however, before a conclusion can be made

on the better clustering technique, additional studies between the three clustering algorithms will

be needed to determine the optimal one. Matching criteria for electrons were studied and the

results presented. The implementation with pions and jets in both calorimeters will need to be

refined to merge the ECAL and HCAL information for the more complicated hadronic showers.

The next step to be carried out for the Particle Flow algorithm would be to redesign the

matching portion of it, replacing it with a more sophisticated matching technique and additional

selection criteria. Further analysis would study the effectiveness of the Particle Flow algorithm for

the case of large pileup.

Using electrons with no pileup, the ECAL resolution is measured to be,

σ

E
=

9.05%√
E
⊕ 8.43%

E
⊕ 0.61% (5.1)

with the average energy resolution for electrons greater than 200 GeV around 6-8 %. It will be

important to measure this for an effective Particle Flow algorithm in the environment of high pileup.
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APPENDIX A

DERIVATION OF EQUATIONS OF MOTION

A.1 Charged Particles

For the Particle Flow Algorithm, you need a reliable way to calculate the trajectory of the

multitude of particles that go through the detector. In our model, we approximate the magnetic

field inside the solenoid to be constant at around 3.84 Teslas, in the ẑ direction. In addition, we

assume that there is no internal electric field interfering with the moving particles. With these

assumptions, we start with the Lorentz force law,

F = q(E + v ×B)

Which now becomes the simpler,

F = q(v ×B) (A.1)

where F is the magnetic force acting on a particle, q is the particle’s charge, v is the particle’s

velocity, and B is the magnetic field strength. But Newton’s second law says, F = ma, and when

generalizing to relativistic effects we then get the following

γm
d2r

dt2
= q

(
dr

dt
×B

)

d2r

dt2
=

q

γm

∣∣∣∣∣∣
x̂ ŷ ẑ
dx
dt

dy
dt

dz
dt

0 0 B0

∣∣∣∣∣∣
Which separates into three coupled differential equations:

d2x

dt2
= ω

dy

dt
;

d2y

dt2
= −ωdx

dt
;

d2z

dt2
= 0 (A.2)

where the substitution ω ≡ qB0

mγ has been made, with ω being the cyclotron frequency.

We know how to solve the equation of motion for z, it is trivial. The challenge is with the coupled

differential equations. You can actually uncouple them easily with the following substitution: Take

some complex number,

u = x+ iy
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then,
du

dt
=
dx

dt
+ i

dy

dt
(A.3)

and,
d2u

dt2
=
d2x

dt2
+ i

d2y

dt2
(A.4)

Now substitute A.2 into A.4:

d2u

dt2
=

(
ω
dy

dt

)
+ i

(
−ωdx

dt

)
= ω

(
dy

dt
− idx

dt

)
= −iω

(
dx

dt
− 1

i

dy

dt

)
= −iω

(
dx

dt
+ i

dy

dt

)
︸ ︷︷ ︸

du
dt

d2u

dt2
= −iωdu

dt
(A.5)

Take another substitution,

Let ξ ≡ du

dt

then A.5 becomes,

dξ

dt
= −iωξ

ξ(t) = c1e
−iωt =

du

dt

u(t) = c1
i

ω
e−iωt = x(t) + iy(t) (A.6)

where c1 is a constant independent of time. We can’t quite solve it yet. However, one small

manipulation makes it possible. Consider the original substitution for u and its complex conjugate.

u = x+ iy and u = x− iy

You can solve this system of equations for x and y, giving the following relations:

x =
(u+ u)

2
and y =

(u− u)

2i
(A.7)

we then get,
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x(t) = c1
i

2ω

(
e−iωt − eiωt

)
=
c1
ω

1

2i

(
eiωt − e−iωt

)
x(t) =

c1
ω
sin(ωt) (A.8)

and similarly,

y(t) =
c1
ω
cos(ωt) (A.9)

We still need to determine the integration constant, c1. If you look back at A.6, you see that the

original coefficient is related to u′, or the velocities in the x and y directions. So it should be

proportional to the initial momentum of the particle.

In addition, we can make the equations A.8 and A.9 a little more general, accounting for possible

phase shifts and differences. Adding in these considerations, as well as initial conditions regarding

position and momentum, we can construct a complete solution [10]:

x(t) = x0 +
vy0
ω
− vy0

ω
cos(ωt) +

vx0
ω
sin(ωt)

y(t) = y0 −
vx0
ω

+
vx0
ω
cos(ωt) +

vy0
ω
sin(ωt)

Recall that,

ω =
qB0

mγ

then we have,

x(t) = x0 +
γmvy0
qB0

− γmvy0
qB0

cos(ωt) +
γmvx0
qB0

sin(ωt)

y(t) = y0 −
γmvx0
qB0

+
γmvx0
qB0

cos(ωt) +
γmvy0
qB0

sin(ωt)

Notice the relativistic momentum γmv in each term. Therefore,

x(t) = x0 +
py0
qB0

− py0
qB0

cos

(
qB0

γm
t

)
+
px0
qB0

sin

(
qB0

γm
t

)
(A.10)

y(t) = y0 −
px0
qB0

+
px0
qB0

cos

(
qB0

γm
t

)
+
py0
qB0

sin

(
qB0

γm
t

)
(A.11)

z(t) = z0 + vz0t (A.12)

where pi ≡ γmvi is the relativistic momentum.
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In all simulations used in this study, the vertex, or initial positions, of the particle is at the

origin of our coordinate system. So x0, y0, and z0 will all be zero for this simulation. This simplifies

the coefficients we need to solve for. We can then solve for the time it takes along the z direction,

since the distance is a fixed value (from vertex to front face of electromagnetic calorimeter).

z = ��z0 + vz0t

d =
pz0
m
t

t =
m

pz0
d (A.13)

where d is the distance from the vertex to the front face of the detector (315.4 cm), and we are

provided with the mass and initial momentum values of each particle. Using this, we can then solve

for the x and y positions. Equations A.10 and A.11 then become,

x(t) =
py0
qB0

− py0
qB0

cos

(
qB0

γpz0
d

)
+
px0
qB0

sin

(
qB0

γpz0
d

)
(A.14)

y(t) = − px0
qB0

+
px0
qB0

cos

(
qB0

γpz0
d

)
+
py0
qB0

sin

(
qB0

γpz0
d

)
(A.15)

A.2 Neutral Particles

The equations of motion for neutral particles is much simpler, as we do not have the Lorentz

force affecting the trajectory. Using the same assumption of no electric field inside the solenoid,

the particles follow a straight path.

x(t) = x0 + vx0t (A.16)

y(t) = y0 + vy0t (A.17)

z(t) = z0 + vz0t (A.18)

Again, the vertex of the initial position of the particles are always zero in our simulations. As

before, we can calculate the time it takes to travel to the front face.

t =
m

pz0
d (A.19)
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With this, we can get the x and y positions for neutral particles.

x = vx0

(
m

pz0
d

)
y = vy0

(
m

pz0
d

)
which become,

x =

(
px0
pz0

)
d (A.20)

y =

(
py0
pz0

)
d (A.21)
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