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ABSTRACT

This thesis searches for new physics at CMS in the form of microscopic black hole production at

a minimum threshold of formation of 2.0 TeV. This analysis will examine data from Run II of the

LHC with center-of-mass energy
√
s=13 TeV, and an integrated luminosity of 12.9±0.8 fb−1. This

is the first analysis to search for microscopic black hole production with the requirement of two

high PT photons in the final state. After modeling backgrounds through low jet multiplicity control

regions, no statistically significant excess is found in the signal region.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

There exist four fundamental forces in the universe that we are aware of. These forces listed

in order of strength are: the strong force, the electro-magnetic force, the weak force, and the

gravitational force. The Hierarchy Problem [3] states that there is a large discrepancy between the

weak and gravitational fundamental forces where the difference in strength between these forces

is extraordinarily large. This raises questions regarding the nature of these forces and our current

description of the universe. A solution proposed by Nima Arkani-Hamad, Savas Dimopolos and

Gia Dvali known as the “ADD model” invokes large extra dimensions to unite the “gravitational

and gauge interactions at the weak scale.” [3] By this process, the ADD model allows for the

large discrepancy between the weak and gravitational forces to vanish because there was no large

discrepancy to begin with; rather, gravitational experiments are measuring a form of gravity that

is diluted due to these large extra dimensions. Such a solution to the hierarchy problem would

provide several testable predictions that manifest themselves in the physical world making it a

viable theory to explore.

Of particular interest to this analysis, the ADD model lowers the Planck Mass (Mpl), which is the

minimum mass required for a black hole to form, into energies obtainable at the LHC. When extra

dimensions are incorporated, one finds that the value of the Planck mass changes with the number

of dimensions, n, as well as the size of said dimensions, R. Mathematically this is defined as:

Mn+2
D =

M2
pl

8πRn
(1.1)

Where MD is the n-dimensional Planck mass, and Mpl is the current value of the Planck mass.

Current models of superstring theory depend on three spatial dimensions, 1 time dimension, and

6 compact spatial dimensions (3+1+6) [12]. This analysis will search for microscopic black holes

under the model for superstring theory. However, this analysis can easily be adapted for different

flavors of string theory or other models that contain any number of extra spatial dimensions.
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CHAPTER 2

THEORY

Microscopic black holes will decay in four distinct phases, as described in detail by Bleicher, Nicolini,

and Sprenger [6]:

• Balding Phase: When the black hole forms, it will be a highly asymmetric object with gauge

field hair. In the initial stage of the evolution, the black hole hair is shed (mainly by the

Schwinger pair production mechanism) and asymmetries are lost via gravitational radiation.

• Spin-Down Phase: At the end of the balding phase, the highly spinning, neutral black hole

loses mass and angular momentum through Hawking and Unruh-Starobinskii radiation.

• Schwarzschild Phase: At the end of the spin-down phase, the resulting spherically symmetric

black hole continues to evaporate but now in a spherical manner. This results in the gradual

decrease of its mass and the increase of its temperature.

• Planck Phase: When the mass and/or the Hawking temperature approaches the fundamental

scale T ∼ M ∼ M∗, the black hole can no be longer described semi-classically. A theory of

quantum gravity is necessary to study this phase in detail.

Phases that are relevant to this analysis are the Spin-Down and Schwarzschild phases where Hawk-

ing radiation takes place. During phases in which Hawking radiation takes place our black hole will

decay into all standard model (SM) particles until it reaches the Planck mass. Once this occurs

the black hole will be classified as a Quantum Black Hole (QBH) and requires a quantum theory

of gravity to analyze further.

2.0.1 CATFISH

In order to simulate events in which Black Holes are produced this analysis will use the Monte Carlo

generator CATFISH: Collider grAviTational FIeld Simulator for black Holes. [8] Other generators

include BlackMax and CHARYBDIS each having their own advantages and disadvantages [11].

CATFISH allows for the modeling of gravitational loss from gravitons escaping into large extra

dimensions providing a more complete simulation of black hole decay in accordance with current

theoretical models. Under the given parameters, CATFISH will generate events in which black
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holes are created under the Yoshino-Rychkov gravitational loss model with electromagnetic charge

conservation.

Using CATFISH this analysis will be able to examine events in which black holes are produced to

create a benchmark of values to compare to data obtained during run II at the LHC. A full account

of generator parameters are listed in Table 2.1

Table 2.1: CATFISH Parameters

Parameter Value

Fundamental Scale 1.0 TeV
Minimum Mass at Formation 2.0 TeV

Minimum Mass Threshold at Evaportaion 1.0 TeV
Number of Final Quanta 2

Number of Extra Dimensions 6
Number of Events 100000

EM Charge Conservation Yes
Gravitational Loss Model Yoshino-Rychkov

The quantities of interest this analysis wishes to extract from the generator include:

• The scalar sum of transverse momenta which will further be defined as ST .

• How many photons are in each event.

• How many jets are in each event.

• The number of candidate events.

• How the number of candidate events scale with jet multiplicity.

2.0.2 Jet Clustering

CATFISH clusters jets based on PYTHIAs PYCELL jet clustering algorithm which defaults the

PT requirement of a jet to 7 GeV [13]. For this analysis, the jets are required to have PT > 40 GeV

and as such jets need to be clustered outside of CATFISH as there is no easy way to change the

PT requirement on the jets within the generator.

For this objective, Jets are clustered using the FastJet [7] package with a distance parameter of

R=0.4 using the anti-kt algorithm. The anti-kt algorithm is chosen for its ability to resolve jets
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efficiently. This algorithm and distance parameter is also chosen for its use in previous CMS

studies. [1]

Requiring that the jets have PT > 40 GeV yields the following jet distribution shown in Figure 2.1.

Figure 2.1: Number of Jets Per Event from CATFISH

One can see that most events in which black hole production takes place will have a significant num-

ber of jets; likewise, events with low jet multiplicity are unlikely to contain black hole production.

This will become key in defining the background when analyzing data.

2.0.3 Candidate Events

At the generator level a candidate event is defined as an event which contains two photons whose

PT are above 40 GeV. When analyzing data collected at the LHC, the definition of a candidate

event will become more strict.

Figure 2.2 displays the number of events containing N number of photons. For this analysis, the

requirement of two high ET photons was chosen to gain access to the diphoton trigger. From Fig.

2.2 this choice is justified as there is a significant number of events that contain at two or more

photons.
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Figure 2.2: Number of Photons Per Event from CATFISH

This analysis then must consider how the number of candidate events at the generator level scales

with jet multiplicity. This is shown in Table 2.2.

Table 2.2: Candidate Events With Various Requirements

Requirement Number of Candidates

Two Photons 100000
Two Photons with PT > 40 GeV 36291

Two Photons with PT > 40 GeV and 0+ Jets 36291
Two Photons with PT > 40 GeV and 1+ Jets 36291
Two Photons with PT > 40 GeV and 2+ Jets 36291
Two Photons with PT > 40 GeV and 3+ Jets 36287

One can see that approximately 36% of the events produced in quantum black hole production will

result in two or more high PT photons. This a sizable fraction of our events and thus ensures that

this analysis is viable.

The ST is the next quantity of interest from the generator. This analysis will use the ST distribution

to search for black hole production for the following reasons [1]:

• ST is not sensitive to the abundance of particles produced in black hole decay.

• The shape of ST distribution is independent of object multiplicity for QCD.

• ST is directly related to the energy of collision.
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This makes ST a robust quantity for searching for new physics and will be a key part to this

analysis.

Previous studies at the LHC have shown that the background will be dominated by QCD multi-

jet production which will produce a decaying exponential ST distribution [1]; however, if one

encounters black hole production, some structure will begin to form past a certain threshold that

is not indicative of QCD.

2.0.4 Monte Carlo ST Distributions

For the purposes of this analysis the ST distribution will be defined as the scalar sum of momentum

in the transverse direction of photons, leptons, anti-leptons, jets and MET. This is mathematically

defined:

ST,Ideal =
vis∑
i

PT,i +
invis∑
i

PT,i (2.1)

Calculating the ST in this manner produces the following ST distribution seen in Figure 2.3:
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Integral  3.629e+04
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Figure 2.3: Ideal ST Distribution from CATFISH

The ideal ST produced at the generator level is far too idealized for real analysis as the generator

provides information not available to the detector such as the momentum of particles who are not

able to measured. These particles include gravitons which would be produced in quantum black
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hole decay and particles who will rarely interact with the detector such as neutrinos. In order

to create a ST distribution that does not use this information, one can define the ST as a vector

imbalance defined as:

ST,V ector =
vis∑
i

PT,i + |
vis∑
i

~PT,i| (2.2)

Calculating the ST in this manner allows the generator to create an ST distribution without using

the momentum of invisible particles. Doing this produces the following ST distribution Figure 2.4.
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Figure 2.4: Vector Imbalance ST Distribution from CATFISH

To better compare these two ST distributions the overlay of the two is shown in Figure 2.5 with

the ideal ST displayed in blue and the vector ST displayed in red. This plot shows that when

calculating the ST using the vector imbalance method, the ST is shifted into a slightly higher ST

region.
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Figure 2.5: Non-Smeared Ideal and Vector ST Distribution from CATFISH

From these plots one can see that in the case of quantum black hole production with a minimum

mass threshold of formation at 2.0 TeV, the ST distribution does not result in a narrow peak at 2.0

TeV; rather, a broad distribution is formed near the minimum mass of formation. However, when

this same distribution is measured at CMS, one must account for the resolution of the measurements.

This process is known as smearing and will be discussed in further detail in subsequent sections.
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CHAPTER 3

PRIMER TO ANALYSIS

3.0.1 Jets

In a proton-proton collision one is colliding the partons that compose the proton (gluons, two

up-quarks and a down-quark), which cannot exist in an isolated state due to color confinement.

Rather than separating after a collision, the quarks will transfer energy into mass and produce quark

antiquark pairs. This process results in the creation of hadronic jets which manifest themselves in

the detector and can be measured and analyzed.

3.0.2 Momentum in the Transverse Direction : PT

The momentum in the direction transverse to the beam pipe is defined as:

P 2
T = P 2

X + P 2
Y (3.1)

The basis for nearly all of physics are conservation laws. Before the collision the momentum in the

transverse direction PT is equal to zero, after the collision of two protons (or more accurately the

partons within them), all momentum in the transverse direction is the result of particle collisions.

The PT should thus be balanced so that the vector sum of PT is equal to zero; however, this is

not the case. For example: weakly interacting particles such as neutrinos will rarely interact with

the detector. The remaining PT required to balance the measured PT is known as the missing

transverse energy (MET). The MET is due to particles that are not able to be measured by

the detector, this includes neutrinos and hypothetical particles such as gravitons that would be

produced by microscopic black holes.
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CHAPTER 4

THE CMS EXPERIMENT

The Compact Muon Solenoid (CMS) detector is a large particle detector built along the LHC

at CERN. The CMS detector uses a 4 T magnetic field to curve the motion of charged particles

produced in proton-proton collisions at the LHC. The CMS detector is composed of five layers:

Tracker, Electromagnetic Calorimeter, Hadronic Calorimeter, Magnet, and the Muon Detectors.

To increase the longevity of the magnet, the CMS magnet is run with a 3.8 Tesla magnetic field

instead of its full strength of 4 Tesla. [9]

A cross-sectional view of the detector is shown in Fig. 4.1

Figure 4.1: The CMS Detector [5]
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4.0.1 Tracker

The CMS tracker is composed entirely of silicon and tracks the path of particles resulting from

collisions by measuring the position of particles along a few key points within an accuracy of 10

µm. This allows for the measurement of curvature that particle’s path has in the magnetic field,

and from this one can derive the momentum of the particle.

4.0.2 ECAL

After the particle travels out of the tracker it traverses the electromagnetic calorimeter (ECAL). The

ECAL is a homogeneous crystal calorimeter composed of a barrel section (EB) spanning |η| ≤ 1.4

and two endcaps (EE) spanning 1.6 ≤ η ≤ 2.4. The ECAL is composed of 75,848 PbWO4 crystals

having a radiation length of X0=0.89 cm and are divided into supermodules containing 1700 crystals

each in the barrel. Lead tungstate crystals were chosen for its high density, short radiation length of

.89 cm and small Moliere radius of 2.19 cm. The ECAL will measure electromagnetic objects such

as photons and electrons by measuring the scintillation light produced from interactions within the

crystals through avalanche photodiodes.

The CMS ECAL has an energy resolution of [9]

σE
E

=
2.8%

√
GeV√

E(GeV )
⊕ 12%GeV

E(GeV )
⊕ 0.3%. (4.1)

The energy resolution shown above is a quadratic sum, which is defined as:

A⊕B =
√
A2 +B2. (4.2)

For the ECAL energy resolution: the first term added in quadrature represents the the stochastic

term and accounts for the variability of objects that will generate a signal in the detector. The

second term accounts for the noise generated from electronics and the final term represents a

constant that accounts for any physical design constraints and calibration of the CMS detector.

For high energy objects, such as the photons being required in this analysis, the constant term in

the ECAL resolution becomes the dominant term in defining the resolution.

4.0.3 HCAL

Hadrons will continue on through the electromagnetic calorimeter and deposit energy into the

hadronic calorimeter (HCAL). The hadronic calorimeter is a hermetic sampling calorimeter com-
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prised of brass and steel absorbing material and plastic scintillators. When a hadron hits an

absorber it will cascade into secondary particles producing scintillation light that can be read out

by the hybrid photodiodes. The resolution of the ECAL + HCAL is found to be [9]:

σE
E

=
111%

√
GeV√

E(GeV )
⊕ 8.6% (4.3)

4.0.4 CMS Magnet

Just beyond the HCAL lies the CMS magnet which is a solenoid comprised of niobium-titanium

coils capable of producing a 4 T magnetic field. For the purposes of longevity to the CMS magnet

is currently running at 3.8 T instead of its full strength of 4 T. The magnet is the key instrument

of the detector as it allows for the measurement of path curvature from which one can derive the

momentum of the particles produced.

4.0.5 Muon Detectors

The last layer of the CMS detector includes the muon chambers. Muons can easily pass through

all the previous layers of highly dense material while most other particles will be absorbed. As

such, the most likely particle to be measured in this region are muons. Muons are measured at four

muon stations which are spaced by the layers of highly dense iron “return yoke.” These layers of

highly dense iron help absorb any particles that should have been absorbed previous to the muon

chambers.

4.0.6 Triggers

The LHC produces billions of collisions per second resulting in an unfathomable amount of data

that is impossible to examine in entirety. In order to filter through the data, CMS uses triggers

to remove events that are not considered interesting. This is done in two stages using the Level 1

Trigger (L1) and High Level Trigger (HLT). The L1 trigger searches for events that are more likely

to contain new physics such as high energy events or an unusual combination of particles formed

resulting from the collision.

These events are then sent to a server where the HLT will then select from candidate events chosen

by the L1 trigger, and reconstruct events to determine if they are interesting or not.
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The L1 trigger for di-photon events triggers on events who contain two photons whose PT > 19

GeV [2]. This analysis requires that there are at least two photons whose PT is greater than 40

GeV, this allows access to the di-photon trigger ensuring that no data is lost in the L1 stage.

4.0.7 Smearing

From the CATFISH Monte-Carlo generated events, the ST distribution was formed using all the

information available from a collision including the information relating to invisible particles that

would escape detection at CMS such as neutrinos and gravitons. As this is too far removed from real

analysis the ST distribution was produced using the vector imbalance which only requires the four

vectors of each visible particle and the MET. As the imbalanced ST only calculates the ST based on

measurable quantities, it is more similar to a real measurement than the idealized ST is. However,

even the imbalanced ST is too idealized for real analysis; thus, we introduce a process known as

smearing where uncertainty is added to the generated four vectors of each particle according to

a Gaussian distribution that is weighted by the resolution of the CMS ECAL and HCAL defined

previously.

Applying this smearing to the ideal ST from the Monte-Carlo generates the plot shown below in

Figure 4.2:
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Figure 4.2: Ideal ST Distribution from CATFISH Smeared to CMS Resolution
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This ST distribution is broader than the one produced from the Monte-Carlo generator CATFISH

and provides a more complete image of how black hole production would manifest itself in the

detector.

Plotting the the non-smeared STversus the smeared ST illustrates this effect and is shown in Figure

4.3:
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Figure 4.3: Ideal ST Versus Smeared Ideal ST

To provide a more a complete picture of what the ST distribution would look like in the CMS

detector, the same smearing process to the vector ST distribution as shown in Figure 4.4.
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Figure 4.4: Vector Imbalance ST Distribution from CATFISH Smeared to CMS Resolution

Just as before, to see how much smearing has broadened our ST distribution a 2D plot is formed

as shown in Figure 4.5
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An example of this smearing effect is shown in the plot below comparing the PT of a smeared and

non-smeared photon.
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Figure 4.6: Smeared Photon PT Versus Non-Smeared Photon PT

This plot shows the effect of smearing according the ECAL resolution. Smearing successfully

broadens the PT values of the Photon generated from the Monte-Carlo to more closely resemble

what CMS would measure.

One also wants to consider the how the HCAL smears particles. The following plot shows the effect

of smearing on pions according to the HCAL resolution.
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Figure 4.7: Smeared Pion PT Versus Non-Smeared Pion PT
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This analysis also wants to consider how the the shape of the smeared vector ST distribution

changes as we require two photons versus zero photons.
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Figure 4.8: Smeared Vector ST for Events With Zero High Energy Photons
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Figure 4.9: Smeared Vector ST for Two+ Photon Events
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From Figure 4.8 and Figure 4.9 one can see a clear distinction between the shape of the ST distribu-

tion when requiring two or more photons whose PT > 40 GeV versus the ST distribution including

everything else. The plot that excludes the high energy photons, Figure 4.8, has a much broader

peak than the ST distribution that includes the photons, Figure 4.9. One can also see that by these

plots that photons are a large portion of the ST spectrum as explicitly removing them shifts the

peak into a much lower ST region.
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CHAPTER 5

DATA

5.0.1 LHC Data Information

This analysis will examine data obtained from the Run II at the LHC prior to August 2016 at

center-of-mass energy
√
s=13 TeV with an integrated luminosity of 12.9 ±0.8 fb−1. This will be

the first thesis to analyze this data for microscopic black hole production under the condition of

two photons in the final state.

5.0.2 Method of Analysis

The microscopic black holes will decay to all SM particles via Hawking radiation. The transverse

momenta resulting from the collision is a sizable fraction of the beams energy [10] making the sum

of transverse momenta (ST ), a well-defined measurable distribution that can be used in a search

for quantum black holes.

Without the production of black holes the ST distribution is expected to be a falling exponential

dominated by QCD. What one expects to see in the case of black hole production is that at some

PT threshold black holes begin to form resulting in some structure formation in the ST distribution

that would not be present otherwise.

As black hole production results in a “broad excess in the ST spectrum rather than a narrow peak”

one is unable to use current methods of analysis to model the multi-jet background in the signal

region where black holes are produced. During Run I of the LHC however, a new method of analysis

was used showing that the shape of the ST distribution remains the same regardless of the number

of objects in the final state. Thus, one can use a low multiplicity control region to predict the shape

of the ST distribution in multi-jet events. This method is known as ST Scaling and is a powerful

tool in searching for new physics.

This analysis differs from the previous black hole searches at CMS due to the requirement of two

photons. By this requirement one can gain access to the diphoton trigger allowing this analysis to

access an unexplored region of phase space that is high in ST .
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CHAPTER 6

SELECTION

One of the unique characteristics of this analysis is the requirement that there exist two high PT

photons in an event to be considered a candidate. No previous search for quantum black hole

production has discriminated on the type of particles required in the final state. In order to ensure

that these particles are indeed photons, the following selection cuts are introduced that remove a

significant portion of background and noise.

6.0.1 Photon Multiplicity Cut

This analysis requires at least two photons whose PT > 40 GeV. Plotting the leading and trailing

photon PT produces figures 6.1 and 6.2 respectively.
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Figure 6.1: Leading Photon PT
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TrailPt
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Figure 6.2: Trailing Photon PT

6.0.2 Calorimeter Region Selection Cuts

This analysis also requires that these photons are in the barrel of the calorimeter defined as the

region |η| < 1.4. The reasoning behind only accepting particles in the barrel is that those particles

can be reconstructed with a higher resolution than particles found in the end cap. Figure 6.3

shows the distribution of photons within the barrel of the calorimeter in η and Figure 6.4 shows

the distribution in phi.
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Figure 6.3: Photon Eta

photonPhi
Entries  2144494
Mean   0.009971
Std Dev     1.816

Φ
3− 2− 1− 0 1 2 3

E
nt

rie
s 

/ .
05

 r
ad

1800

1900

2000

2100

2200

2300

2400

2500

2600

2700
photonPhi

Entries  2144494
Mean   0.009971
Std Dev     1.816

Photon Phi

Figure 6.4: Photon Phi

6.0.3 Photon Identification Cuts

To ensure our object is indeed a photon, this analysis requires the ratio of the energy deposited in

the hadronic calorimeter to that deposited in the electromagnetic calorimeter defined as H
E to be:
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H

E
< 0.05 (6.1)

To further ensure that our objects are indeed photons this analysis considers the quantity σiηiη

which is defined as the shower width and is calculated as follows:

σ2iηiη =

∑
5x5wi(η̄ − ηi)2∑

5x5wi
(6.2)

This equation is a sum over all 5x5 crystals where wi is a logarithmic weight on the crystal with

index i, η̄ is the energy weighted average η for a shower, and ηi is the position in eta of the crystal

with index i [4]. The weighting wi is defined as:

wi = max(0, w0 + ln(
Ei
E5x5

)) (6.3)

Where w0 is an optimized free parameter, Ei is the energy deposited in the crystal with index i and

E5x5 represents the total energy deposted in a 5x5 grid of crystals. This is quantity is related to

the variance about the mean in η and helps discriminate against jets. It does this by using the fact

that hadronic jets are composed of many objects, and as such they will manifest themselves in the

detector with a wider shower width than that of photons. Thus, this analysis requires σiηiη <.0102

for the photon to be accepted as a candidate. The σiηiη distribution is shown in Fig. 6.5.
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Figure 6.5: σiηiη Distribution
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Isolation is introduced to reduce the number of objects mimicking a real photon by requiring there

to be no high-energy objects near the selected particle.

Table 6.1: Isolation Requirements

Barrel Loose(90.4%) Medium (79.9%) Tight (70.1%)

Background Rejection Loose (83.8%) Medium (86.9%) Tight (88.9%)
HoverE 0.05 0.05 0.05
σiηiη 0.0102 0.0102 0.0100

PF Charged Hadron Isolation 3.32 1.37 .76
PF Neutral Hadron Isolation 1.92+0.014∗PT,γ+0.000019∗P 2

T,γ 1.06+0.014∗PT,γ+0.000019∗P 2
T,γ 0.97+0.014∗PT,γ+0.000019∗P 2

T,γ

PF Photon Isolation .81+0.0053*PT,γ .28+0.0053*PT,γ .08+0.0053*PT,γ

This analysis will use the medium isolation requirements as that set of cuts removes a significant

portion of background without removing too many events from the signal region. The medium

isolation requirements are also chosen for their use in previous black hole searches at CMS.
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CHAPTER 7

ANALYSIS

After the event is considered a candidate by passing all selection requirements, the ST distribution

is formed by taking the scalar sum of momentum in the transverse direction of photons, leptons,

jets and MET for each event. This produces Fig. 7.1.

Figure 7.1: 0+ Jet ST For Two Good Photons

As the shape of ST distribution for QCD does not change with object multiplicity, one is able

to generate the background for these events using ST scaling. This is done by fitting the ST

distribution for low jet multiplicity events to a functional form.
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7.0.1 Functional Form

The ST distribution is fit to the following functional form:

f(x) =
P0(1 + x)P1

xP2+P3 log(x)
(7.1)

Fitting determines the values of PN for the functional form defined for each jet multiplicity require-

ment.

This allows for the creation of curves that estimate our background shape. The Monte-Carlo

generator CATFISH has shown that events with a low jet multiplicity are unlikely to contain black

hole production and as such are safe to use as a control region to form backgrounds from.

Doing so produces the following table of values for events requiring two good photons shown in

table 7.1.

Table 7.1: PN Values for Two Good Photons

Parameter Zero Jets One Jet Two Jet

P0 .01897 ± .00832 1.376 ± .462 9.503 ± 1.793
P1 6.836 ± .118 7 ± .1 3.086 ± .328
P2 .05611 ± .00746 2.576 ± .139 .2332 ± .2046
P3 0.8025 ± .0098 .5625 ± .0086 .0475 ± 0.0154

In order to compare each functional form fJ(x) one must apply integral normalization as defined

in the following equation.

Cj

∫ 700

600
fj(x)dx = 1 (7.2)

Where j refers to the explicit number of jets required and Cj is some normalization constant.

Plotting the normalized functional forms produce the following envelope plot for two good photons:
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Figure 7.2: Integral Normalized f(x) For 2 Good Photons and Varied Jet Multiplicity

In 7.2 The black curve represents f0(x), the red curve represents f1(x), and the blue curve represents

f2(x).

In order to increase the number of statistics available this analysis would also want to consider the

case of only one photon passing all selection requirements and one photon that does not. Doing so

produces the following PN values:

Table 7.2: PN Values for One Good and 1 Bad Photon

Parameter Zero Jets One Jet Two Jet

P0 3.121 ± 0.159 .6461 ± .0653 1.001 ± .524
P1 6.722 ± .016 5.863 ± .029 6.256 ± .119
P2 .2177 ± 0.0016 .02508 ± .00091 1.6 ± 0.0
P3 .7969 ± 0.0012 0.6881 ± .0023 .5912 ± 0.0104

Applying the same integral normalization technique referenced earlier, the following envelope plot

is produced by requiring only one photon to pass all selection requirements and one photon that

does not.
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Figure 7.3: Integral Normalized f(x) For 1 Good Photon 1 Bad Photon and Varied Jet Multiplicity

In 7.3 The black curve represents f0(x), the red curve represents f1(x), and the blue curve represents

f2(x).

7.0.2 Control Region Fit on Signal Region

The control region in which this analysis can safely say there would be almost no black hole

production, as shown in the Monte-Carlo generator CATFISH, is the black curve which contains

zero jets. As the number of jets increases, so does the risk that the background will be contaminated

by signal.

Scaling the integral normalized curves onto the the ST distribution for 3+ Jets will determine if

there is a significant excess of events produced that is not indicative of QCD.

For the case of two good photons, scaling the integral normalized curves onto the 3+ jet ST

distribution forms Figure 7.4
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Figure 7.4: 0,1,2 Jets f(x) For 2 Good Photons Scaled to 3+ Jet ST

In figure 7.4 the black curve represents f0(x), the red curve represents the 1 jet f1(x) and the blue

curve represents the 2 jet f2(x). Examining explicitly over the signal region yields the following

plot seen in Fig. 7.5.
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Figure 7.5: 0,1,2 Jets f(x) For 2 Good Photons Scaled to 3+ Jet Signal Region ST

The integral of bins in data in the region 1500 to 2400 GeV is the number of events measured in

data for 2 good photons corresponding to the expected signal region generated from the Monte-

Carlo and is equal to 4 events. Integrating the curves over the range above yields the following

values for what is expected from QCD.

Table 7.3: Integral of fj(x) from 1500 to 2400 for 2 Good Photons

fj(x) Integral of fj(x)

f0(x) 1.5
f1(x) 3.6
f2(x) 4.3

Now the same scaling is applied to the integral normalized curves generated from events that

contain one good photon and one bad photon. Doing so produces the following plot shown in Fig.

7.6:
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Figure 7.6: 0,1,2 Jets f(x) For 1 Good Photon 1 Bad Photon Scaled to 3+ Jet ST

In Figure 7.6 the black curve represents f0(x), the red curve represents the 1 jet f1(x) and the blue

curve represents the 2 jet f2(x).

Closer examination over the signal region yields Figure 7.7.
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Figure 7.7: 0 Jet f(x) For 1 Good Photon 1 Bad Photon Scaled to 3+ Jet Signal Region ST

The integral of bins in data in the region 1500 to 2400 GeV is the number of events measured in

data for 1 good / 1 bad photon and is equal to 7 events. Integrating the curves over the range

above yields the following values for what is expected from QCD.

Table 7.4: Integral of fj(x) from 1500 to 2400 for 1 Good 1 Bad Photon

fj(x) Integral of fj(x)

f0(x) 1.8
f1(x) 5.1
f2(x) 9.4
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CHAPTER 8

RESULTS

This analysis searched for quantum black hole production at
√
s= 13 TeV requiring two high ET

photons in the final state at the LHC. Using methods defined in previous searches at CMS this

analysis concludes that there is no statistically significant excess in the signal region as the number

of observed events falls within the range of values expected from QCD. Further studies can impose

cross-section limits on the production of quantum black holes in this signal region.
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