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Abstract

In lattice gauge theory one estimates masses from correlation functions in Euclidean
time to which superselection rules may apply. The correlation functions are a super-
position of exponential functions of the energy levels, and the mass to be estimated
is that associated with the ground state in our investigation. We discuss and im-
plement three such estimators. The first is obtained by taking the logarithm of the
ratios of consecutive values of the correlation function and estimating the asymptotic
value. Another estimator involves fitting a 2-parameter exponential function to the
correlation function and trying to eliminate higher mass contributions. The third
estimator involves fitting a 4-parameter function of the sum of two exponentials to
the correlation function. Various features and quirks of the different estimators are
described. A comparison of the three estimators shows consistency indicating that
all three are reliable methods, supplementing one another, for numerically estimating
masses from correlation functions.
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1 Introduction

The Standard Model of particle physics is a SU(3) × SU(2) × U(1) gauge quantum
field theory that describes the electroweak and strong interactions and classifies the
known elementary particles. The fundamental objects of the Standard Model are
quantum fields including fermion fields ψ, the electroweak boson fields W1, W2, W3,
and B, the gluon field, and the Higgs field φ.

When the coupling of a gauge theory is small enough, interesting quantities can be
computed perturbatively and lead to the most precise tests of the theory. However,
there are many questions which can only be answered non-perturbatively. Lattice
gauge theory (LGT) is a non-perturbative approach that can help us answer these
questions.

In LGT, the four-dimensional Minkowski spacetime of quantum field theories is
Wick rotated to become a four-dimensional Euclidean spacetime on a finite, discrete,
hypercubic lattice. Such a lattice is defined by sites separated by distance a and
connected by links. Fermion and Higgs fields are defined at the lattice sites and
gauge fields on the lattice links. The action in LGT is constructed so that gauge
invariance is preserved on the lattice and the continuum action is reproduced when
the lattice spacing a is taken to zero.

Quantities such as particle masses are calculated stochastically in LGT using
Markov Chain Monte Carlo (MCMC) methods in computer simulations. Such simu-
lations are often repeated at many couplings with lattices of different sizes, so that
the quantities of interest can be extrapolated to the infinite volume limit. The true
continuum limit is obtained by driving the couplings of the theory to their critical
values. What is often done in practice is to look at the limit am → 0, where a is
the lattice spacing and m sets the physical mass scale. For example, m may be the
mass of the ground state. LGT calculations can be extremely resource intensive and
even when employing parallel computation with a number of processors, a typical
simulation to generate a single data point might take a week on a typical university
computing cluster.

This thesis is a small part of larger projects being undertaken by the LGT group at
Florida State University (FSU). LGT is used to numerically estimate the Higgs and W
masses, mH and mW , using correlation functions. With the mass ratio mH/mW = 1.6
held constant near the known [1] experimental value, we are searching for numerical
evidence in favor or against continuum limit behavior in the SU(2) Higgs model.
Throughout this process, the accuracy of mass estimates is of particular interest. In
this thesis, we examine different methods for estimating masses. We are primarily
concerned with the accuracy of mass estimates in general and of the ratio mH/mW

in particular.
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2 Lattice Gauge Theory

In quantum field theory (QFT), the gauge field Lagrangian can be written as

LG =
1

4
F a
µνF

a
µν ,

where the field strength tensor is

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν .

Here, g is the coupling constant, Aµ = −igAa
µT

a is the gauge field, T a with a =
1, 2, . . . N2 − 1 are the generators of the SU(N) Lie algebra, and fabc are the real
structure constants of SU(N). The gauge action is then simply

SG =

∫
d4xLG. (1)

For the Higgs field, the Lagrangian is [13]

LH = (DµΦ)
†DµΦ +m2

0Φ
†Φ + λ0

(
Φ†Φ

)2
,

where Φ = (Φu,Φd)
T is the complex Higgs doublet, and the covariant derivative Dµ

is

Dµ = ∂µ −
ig0
2
Bµ −

ig′0
2
W k

µ τk.

Here, Bµ and W k
µ are the U(1) × SU(2) electroweak gauge fields. The Higgs action

is then

SH =

∫
d4xLH . (2)

2.1 SU(2) Lattice Gauge Theory with Higgs

By performing a Wick rotation, which involves replacing t with it ≡ τ , we can relate a
field theory in four-dimensional Minkowski space to one in four-dimensional Euclidean
space. This relationship was extensively studied by Osterwalder and Schrader [10].
In 1974, Wilson [14] introduced a formulation of quantum chromodynamics on a four-
dimensional lattice that preserves gauge invariance. On such a lattice, the formerly
intractable infinite-dimensional path integrals of QFT become finite-dimensional and
can be evaluated using MCMC simulations.

In LGT, we start by replacing continuous 4D spacetime with a 4D finite lattice

x→ an,

where a is the lattice spacing, and n with integer components nx, ny, nz = 1, 2, . . . , N ,
and nt = 1, 2, . . . , Nt labels the lattice sites. To maintain gauge invariance of the
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action, Wilson introduced a field Uµ(x) with a directional index µ. Commonly called
“link variables”, the matrices Uµ(x) are oriented and attached to the links between
lattice sites. The trace over a closed loop of link variables is gauge invariant. For the
gauge action it is sufficient to use the smallest closed loop, called a “plaquette”, on
the lattice. The product of the link variables defining a plaquette is denoted U�. The
Wilson gauge action is the sum over all positively oriented plaquettes

SG,latt = β
∑

�

(
1− 1

N
Tr [U�]

)
, β =

2N

g2
,

where g is the bare coupling constant, and N = 2 in this thesis. It can be verified that
in the classical continuum limit a → 0, the Wilson action becomes the continuum
action of Eq. (1). Textbooks can be consulted for the derivation [9, 4]. The lattice
Higgs action, is

SH,latt =
∑

x

(
λ
(
Φ†(x)Φ(x)− 1

)2
+ Φ†(x)Φ(x)− κ

∑

µ

Φ†(x+ µ̂)Uµ(x)Φ(x)

)
,

where κ is called the hopping parameter. By writing Φ(x) = ρ(x)α(x) and introducing
the gauge invariant link variable Vµ(x) ≡ α†(x + µ̂)Uµ(x)α(x) and then taking the
limit λ→ ∞, the action S = SG,latt + SH,latt simplifies to

S = β
∑

�

(
1− 1

2
Tr [V�]

)
− κ

∑

x,µ

Tr [Vµ(x)] . (3)

We shall limit our investigation to the λ → ∞ limit, because exploring the full
parameter space would not be possible in the time at our disposal.

To extract masses, we follow Langguth, Montvay, and Weisz [6] and measure
correlation functions of the quantities

h ≡ Tr [Vµ(x)] , and wrµ ≡ Tr [τrVµ(x)] .

For example, we define the operator

h̃(~p, nt) =
∑

~x

ei~p·~x h(~x, nt),

where

pi =
2πni

N
, ni = 0, 1, . . . , N − 1,

and where i = 1, 2, 3 and N3 is the spatial volume of the lattice. For our numerical
calculation of the masses, the operator is projected to zero momentum, ~p = ~0, then
the corresponding Euclidean correlation function is

C(nt) = 〈h̃(~0, nt)h(~0, 0)〉 =
∑

k

〈0|ĥ|k〉 〈k|ĥ†|0〉 e−ntEk .
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2.2 Triviality

In the standard model, the Higgs field causes spontaneous symmetry breaking that
triggers the Higgs mechanism giving mass to the gauge bosons. By construction, this
arises from the quartic self-coupling of the Higgs field. However, in the continuum
limit, the renormalized coupling seems to be driven to zero. That is, the Higgs field
appears to be trivial. This is the problem of triviality.

In 1974, Wilson [15] showed that a scalar Higgs model is trivial for dimensions
higher than four. In 1981, Aizenman [2] proved this rigorously. Strong evidence of
triviality for the most interesting case, i.e., four dimensions, has been shown analyti-
cally [12] and by lattice simulations [16].

Earlier work on triviality was performed primarily to get upper bounds on the
Higgs mass [5, 13]. Now that a light Higgs has been discovered [1], there is under-
standably no longer much interest in upper mass bounds, which become shifted all the
way beyond the Planck mass scale. Therefore, one may expect continuum limit be-
havior in the range of coupling constants accessible to our simulations. One may call
this a “pseudo” continuuum limit, because it breaks down eventually at an incredibly
large mass scale. However, this argument assumes that the SU(2) gauge interaction
is negligible due to its asymptotic freedom. The ultimate aim of the project is to
investigate whether this assumption is justified.

2.3 Mass Estimates

For instance, in the textbook by Gattringer and Lang [4] a Euclidean correlation
function of the form

C(nt) =
∑

k

〈0|Ô|k〉 〈k|Ô†|0〉 e−ntEk , (4)

is derived. This shows that our correlation function is a sum of exponential functions

C(nt) = A0e
−ntE0 + A1e

−ntE1 + A2e
−ntE2 + · · · .

We are using nt as the time variable to emphasize that the variable takes discrete
values when we are on the lattice, using lattice units a = 1. To revert to normal
units, one of the energies or masses has to be used to set the scale.

In units where c = 1, the energy of a particle with rest mass m0 as a function of
momentum is

E(p) =
√
m2

0 + p 2.

For momentum p = 0, we have that E = m0, so that the leading contribution to the
correlation function Eq. (4) comes from the lowest mass. For sufficiently large nt the
first exponential term dominates, and we have

C(nt) ≃ A0e
−m0nt , (5)
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where m0 is the rest mass of the particle being estimated. To check for consistency
or obtain a better fit we include the second exponential term

C(nt) ≃ A0e
−m0nt + A1e

−m1nt ,

and perform a four parameter fit with the parameters A0, m0, A1, and m1. In that
case, the parameter of primary interest is still m0—the mass associated with the
ground state energy.

3 MCMC Simulations and Statistical Analysis

3.1 Gaussian Difference Test

In this thesis, different mass estimators will be compared. Given two different esti-
mates of a mass and their error bars, how does one determine if the difference between
the estimates is due to chance or due to a real difference between the estimators? In
the textbook [3], the Gaussian difference test is derived to help answer this question.

Given two different estimates of some mean x and y with difference

D = x− y,

and their error bars σx and σy, then the random variable

Dr

σD
, where σD =

√
σ2
x + σ2

y ,

is normally distributed with expectation zero and variance one. The superscript “r”
is used to emphasize that Dr is a random variable. Then the Gaussian distribution
implies the probability

P

(∣∣∣∣
Dr

σD

∣∣∣∣ ≤
D

σD

)
= erf

( |D|√
2σD

)
= erf


 |x− y|
√
2
√
σ2
x + σ2

y


 ,

where erf(x) is the Gaussian error function. The probability that the measured dif-
ference |x− y| is due to chance is then

Q = 1− P = 1− erf


 |x− y|
√
2
√
σ2
x + σ2

y


 . (6)

If Q is large (e.g. Q > 0.05), we conclude that the difference between the estimates
is most likely due to chance. If Q is small, then the difference |x− y| is statistically
significant, and the two estimators are probably measuring different things.
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3.2 Curve Fitting

Given N data points yi(xi) with i = 1, 2, . . . , N , with statistical error bars σi on the
yi, we often model the data by fitting it to some function with free parameters. The
goal is then to estimate the parameters and their error bars. For example, if the data
appears linear, one might model it with a function of the form y = a1x + a2. Here,
~a = (a1, a2) are the free parameters.

The foundation of most fitting methods is the chi-squared function defined to be

χ2(~a) =
N∑

i=1

(
yi − y(xi;~a)

σi

)2

. (7)

Here, yi are the data points with statistical errors σi, and y(xi;~a) is the function
we are fitting. The components of ~a = (a1, . . . , aM) are the free parameters to be
estimated. The best estimates of the free parameters occur when χ2 is at a minimum.
The task of fitting a model function to a set of data is then reduced to the problem
of minimizing χ2 by trying different possibilities for a1, . . . , aM . Statistical error bars
for the parameters are obtained from the diagonal elements of the covariance matrix.

There are well-known methods for linear and polynomial fitting. For such fits,
the minimization of χ2 is straightforward. In our case, however, we will generally be
fitting to nonlinear exponential functions. For that, we use the Levenberg-Marquardt
algorithm proposed by Levenberg [7] and improved by Marquardt [8].

The Levenberg-Marquardt algorithm uses a weighted average of the Newton-
Raphson and the Steepest Descent methods for minimizing χ2. All three are iterative
methods that begin with some initial guess, ~a1, for the free parameters. The Steepest
Descent method computes the next iteration point, ~an+1, from

~an+1 = ~an − γ∇χ2(~an),

where γ is a small constant. In the Newton-Raphson method, the next iteration point
is determined from

~an+1 = ~an −H−1∇χ2(~an),

where H is the M ×M Hessian matrix of χ2 with components

Hjk = 2
N∑

i=1

1

σ2
i

[
∂y(xi;~a)

∂aj

∂y(xi;~a)

∂ak
− [yi − y(xi;~a)]

∂2y(xi;~a)

∂aj∂ak

] ∣∣∣
~a=~an

.

The advantage of the Steepest Descent method is convergence even given a poor initial
approximation. The disadvantage is slow convergence. The Newton-Raphson method
converges rapidly, but needs a good initial approximation. The Levenberg-Marquardt
method combines the two using a weighted average. Initially, the weight is biased
toward the Steepest Descent method ensuring convergence, at least toward a local
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minimum. Once convergence is detected, the weight is shifted to the speedier Newton-
Raphson method. A detailed description of the Levenberg-Marquardt algorithm and
its application can be found in [3].

As one measure of the quality of a fit, we look at the goodness-of-fit defined in
[11] as

q = 1− P

(
ν

2
,
χ2

2

)
, (8)

where P (a, x) is the incomplete gamma function. Here, χ2 defined in Eq. (7), is of the
fit parameters, and ν is the number of degrees of freedom calculated as the number
of points being fitted minus the number of fitting parameters. The goodness-of-fit
q-value gives the probability that the observed chi-square will exceed χ2 by chance
even for a correct model. In other words, it gives the likelihood that the difference
between the fit and the data is due to chance. A high q-value, e.g. q > 0.05, suggests
that the fitting model is correct. The goodness-of-fit (lowercase q), which gives the
likelihood that the difference between a curve fit and the data is due to chance, should
not be confused with the Gaussian difference (uppercase Q) described in section (3.1),
which gives the likelihood that the observed difference between two means is due to
chance.

3.3 Jackknife Binning

We use the output from MCMC simulations performed on multiple processor clusters.
The design of the simulations required only simple modifications from those described
by Berg [3]. As is common with LGT simulations that aim at estimating non-linear
functions of the generated data, jackknife binning is performed to suppress the bias
and to obtain estimates of the error.

Given data xi with i = 1, 2, . . . , N , we use the unbiased estimator

x =
1

N

N∑

i=1

xi,

of the expectation value x̂ = 〈xi〉. We often want to estimate some non-linear function

f̂ = f(x̂) using the estimator f = f(x). However, for many such functions, calculating
the uncertainty using error propagation formulas is neither practical nor reliable.
Alternatively, jackknife binning is easier and more robust. With this method, we
construct N jackknife bin subsets {xJn} (J = 1, . . . , N) of our data by removing the
Jth entry of the original set. Then

σ2
f
=
N − 1

N

N∑

J=1

(
fJ − f

)2
,
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gives the variance of f . Here, f is the value of the estimator computed for the
original set, and fJ gives the estimator for the Jth jackknife bin. The square root of
the variance is taken to estimate the uncertainty of f̂ .

The bias of the estimator is given by

bias
(
f
)
= (N − 1)

(
f
J − f

)
,

where f
J

is the mean of the estimates fJ . The bias corrected estimator is then

f
c
= f − (N − 1)

(
f
J − f

)
.

To estimate the statistical uncertainty of the bias corrected estimator, one can perform
second level jackknife binning. One constructs N(N − 1) subsets of our original data
set, essentially by doing a jackknife binning of each of our first level jackknife bins.
Second level jackknife binning is only necessary when the bias is found to be large
and correction becomes necessary.

3.4 Mass Estimators

For a typical simulation, e.g., 83 × 64 or 123 × 64 with some specified β and κ, the
output of the MCMC simulation is a number of data files containing jackknife bins
of the correlation functions for the W mass and Higgs mass. From correlations in the
long direction, we estimate mW and mH using several different estimators.

3.4.1 Ratio Fit

In practice, we compute correlation functions of Euclidean time differences z = ∆t.
For example, C(z = 1) is the average value that the correlation function gives for
all pairs of time points separated by a distance of 1. For the subsequent estimate of
masses, jackknife bins of C(z) are calculated, so that the mass estimators come in
jackknife bins.

One way to estimate m0 is to start by looking at the ratio of consecutive values
of the correlation function

C(z)

C(z + 1)
=

A1e
−m0z + A2e

−m1z + A3e
−m2z + · · ·

A1e−m0(z+1) + A2e−m1(z+1) + A3e−m2(z+1) + · · · .

For large z,
C(z)

C(z + 1)
≃ Ae−m0z

Ae−m0(z+1)
= em0 .

Taking the natural logarithm of both sides gives us

m(z) = ln

(
C(z)

C(z + 1)

)
, (9)
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Figure 1: An example of the ratio fit. Here we plot m(z) from Eq. (9) for the W mass (on the left)
and the Higgs mass (on the right). The asymptotic value m(z) → m0 is estimated by applying a
horizontal fit after excluding some of the initial points.

where m(z) → m0 as z → ∞. Asymptotically, this logarithm approaches our mass
m0. Since m(z) > m0, our mass estimate here is an upper bound.

One does not have to use the ratio of C(z) to C(z + 1). In fact, the mass could
also be estimated using, for example,

m0 ≃
1

3
ln

(
C(z)

C(z + 3)

)
.

This estimator converges to the asymptotic value faster than if the ratio C(z) to
C(z + 1) is used. However, with the C(z + 3) in the denominator comes larger
statistical error, so there is a tradeoff. Comparing the estimates of m0 from multiple
such versions of the ratio fit may be used to gauge systematic uncertainty in the
estimates.

In this thesis, mass estimators are compared using mass estimates from 123 × 64
lattice simulations. The time extension of these lattices is Nt = 64. The correlation
functions C(z) are of the time differences z = ∆t, so given the perdiodic boundary
conditions, 1 ≤ z ≤ 32. The ratio fit used in this thesis is of the form Eq. (9). For
large z, the statistical error of the correlation function C(z) rapidly becomes large.
Hence, the error bars for Eq. (9) become large. Beyond some z′, the error bars become
so large that we lose nothing by discarding all points with z > z′. When the error bars
become large, C(z) begins to fluctuate and a convenient cut off point is the smallest
z′ for which C(z′)/C(z′+1) < 1. When the cutoff point is reached, we automatically
discard points with z > z′.

Fig. (1) illustrates a typical ratio fit of the W mass in the left panel and the Higgs
mass in the right panel. In this example, the simulation was on a 123 × 64 lattice
with β = 2.30 and κ = 0.404. For the W mass, points with z > 14 are discarded as
described in the previous paragraph. To obtain the asymptotic value, a horizontal
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line is fitted to Eq. (9) using the Levenberg-Marquardt algorithm. The uncertainty of
the mass estimate is obtained using the jackknife method. Since the mass is estimated
from the asymptotic value of Eq. (9), some initial points must be discarded. In this
example, the first four points are discarded and the horizontal fit is applied in the
interval 5 ≤ z ≤ 14.

Several criteria are used to determine the best fit interval. One is to optimize
the goodness-of-fit1 q given by Eq. (8). The second is to minimize the calculated
mass. The ratio fit gives an upper bound on the mass, so minimizing the measured
mass gives us a least upper bound. For this example, different proposed fits are
tabulated in Table (1). We see that the goodness-of-fit is optimized when the fit
is over the interval 5 ≤ z ≤ 14 with q = 0.9055. The mass becomes smaller as
additional points are discarded, however, the uncertainty rapidly grows large. If we
discarded one additional point and performed the fit over the interval 6 ≤ z ≤ 14,
the mass estimate would be slightly smaller, but this improvement would be negated
by the increased uncertainty. Therefore, we are justified in fitting over the interval
5 ≤ z ≤ 14, which gives us the mass estimate mW = 0.4666± 0.0044.

For the Higgs mass estimate, we use the same criteria. Points z > 10 are discarded
due to large error bars. The proposed fits are tabulated in Table (2). The goodness-
of-fit is optimized, with q = 0.9432, if we fit over the interal 5 ≤ z ≤ 10. Discarding
additional points reduces the mass estimate further, but the increased uncertainty
becomes too costly. Therefore, we fit over the interval 5 ≤ z ≤ 10 as shown in the
right panel of Fig. (1). This fit gives us the mass estimate mH = 0.665± 0.014.

3.4.2 1-mass Fit

As discussed in section 2.3, for sufficiently large nt our correlation function is

C(nt) ≃ A0e
−m0nt .

The lattice has periodic boundary conditions, so the correlation functions have time
translational symmetry. This leads us to a fit of the form

C(z) = A
[
e−mz + e−m(Nt−z)

]
. (10)

The second term reflects the periodic boundary conditions and the finite time ex-
tension of the lattice. For large Nt, e.g., Nt = 64, it is negligible. We also exploit
this symmetry to increase our statistics. The two parameters, A and m, are adjusted
during the fitting process, with the mass m being the parameter of primary interest.
The mass estimate is again an upper bound.

The least squares fit is a function of the error bars. So, points with smaller error
bars are more heavily weighted. The actual curve-fitting process is not easily amenable

1Due to correlations between the data the goodness-of-fit loses its statistical meaning, but the fit
with the largest q may still be preferred.
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Proposed Fit Included Points q mW

1 ≤ z ≤ 14 14 0.0000 1.8495± 0.0005
2 ≤ z ≤ 14 13 0.0000 0.7337± 0.0011
3 ≤ z ≤ 14 12 0.0000 0.5223± 0.0017
4 ≤ z ≤ 14 11 0.2723 0.4763± 0.0028
5 ≤ z ≤ 14 10 0.9055 0.4666± 0.0044
6 ≤ z ≤ 14 9 0.8849 0.4630± 0.0071
7 ≤ z ≤ 14 8 0.8398 0.4591± 0.0110
8 ≤ z ≤ 14 7 0.8093 0.4693± 0.0186
9 ≤ z ≤ 14 6 0.8269 0.4487± 0.0292

Table 1: For the W correlation function plotted in the left panel of Fig. (1), we tabulate here different
ratio fits. The first column gives the interval over which the fit is proposed. The second column
gives the number of points included in the fit. The third column gives the goodness-of-fit q, and
the final column gives the mass estimate and uncertainty from the proposed fit. The uncertainty is
obtained using the jackknife method. In this example, we choose the fit 5 ≤ z ≤ 14 as described in
the text and displayed in the left panel of Fig. (1).

Proposed Fit Included Points q mH

1 ≤ z ≤ 10 10 0.0000 1.2199± 0.0009
2 ≤ z ≤ 10 9 0.0000 0.8362± 0.0017
3 ≤ z ≤ 10 8 0.0000 0.7244± 0.0035
4 ≤ z ≤ 10 7 0.6603 0.6849± 0.0076
5 ≤ z ≤ 10 6 0.9432 0.6649± 0.0140
6 ≤ z ≤ 10 5 0.8787 0.6613± 0.0280
7 ≤ z ≤ 10 4 0.7713 0.6498± 0.0511

Table 2: For the Higgs correlation function plotted in the right panel of Fig. (1), we tabulate here
different ratio fits. The first column gives the interval over which the fit is proposed. The second
column gives the number of points included in the fit. The third column gives the goodness-of-fit q,
and the final column gives the mass estimate and uncertainty from the proposed fit. The uncertainty
is obtained using the jackknife method. In this example, we choose the fit 5 ≤ z ≤ 10 as described
in the text and displayed in the right panel of Fig. (1).
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Figure 2: Here we have typical semi-log plots of C(z) for the W correlation function (on the left)
and the Higgs correlation function (on the right). The solid lines display the 1-mass, 2-parameter
fits of the form Eq. (10) for the W mass and Higgs mass. Initial points are excluded because of
unwanted higher mass contributions to the correlation function.

to automation, and manual adjustments are made after a visual examination. This is
illustrated in the example fits shown in Fig. (2), where the 1-mass fit is performed for
the W mass (left panel) and the Higgs mass (right panel). In this example, a 123×64
lattice was used, again, with β = 2.30 and κ = 0.404. The uncertainties of the mass
estimates are obtained using the jackknife method.

As discussed in section 3.4.1, the time extension of the lattice used is Nt = 64,
so 1 ≤ z ≤ 32. The statistical error of the correlation functions, C(z), grows large
rapidly with increasing z. At the same time, C(z) becomes small with increasing z.
Typically, C(z) becomes statistically indistinguishable from zero for z greater than
some z′, and we are justified in excluding C(z > z′) from our fits. In the example
shown in Fig. (2), this occurs at z′ = 15 for the W mass as C(16) = (0.21±0.89)×10−8

is indistinguishable from zero, so we exclude C(z > 15) from the fit. For the Higgs
mass, this cutoff occurs at z′ = 9 since, in this example, C(10) = (0.29± 0.29)× 10−7

is indistinguishable from zero.
The small z = ∆t points are sensitive to high mass contributions to the correlation

function. Therefore, we must neglect the lowest z values until consistency of the fit
is found. There are several criteria used to determine how many initial points to
exclude from the fit. The first is to optimize the goodness-of-fit q defined by Eq. (8).
The second is to minimize the estimated mass. The 1-mass fit gives an upper bound,
so we want to find the least upper bound.

Continuing with the same example, we examine proposed fits for the W mass
in Table (3) and the Higgs mass in Table (4). For the W mass, we see that the
goodness-of-fit is optimized if we fit over the interval 5 ≤ z ≤ 15. The estimated
mass is minimized if we fit over the interval 8 ≤ z ≤ 15. Although the estimated
mass decreases as more initial points are excluded, the uncertainty also grows larger.
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Proposed Fit Included Points q mW

0 ≤ z ≤ 15 16 0.0000 2.0731± 0.0005
1 ≤ z ≤ 15 15 0.0000 0.6873± 0.0007
2 ≤ z ≤ 15 14 0.0000 0.5026± 0.0011
3 ≤ z ≤ 15 13 0.2452 0.4719± 0.0017
4 ≤ z ≤ 15 12 0.9875 0.4651± 0.0026
5 ≤ z ≤ 15 11 0.9891 0.4626± 0.0042
6 ≤ z ≤ 15 10 0.9783 0.4614± 0.0067
7 ≤ z ≤ 15 9 0.9631 0.4645± 0.0105
8 ≤ z ≤ 15 8 0.9539 0.4564± 0.0170
9 ≤ z ≤ 15 7 0.9348 0.4677± 0.0276

Table 3: For the W correlation function plotted in the left panel of Fig. (2), we tabulate here
different 1-mass fits of the form Eq. (10). The first column gives the interval over which the fit is
proposed. The second column gives the number of points included in the fit. The third column
gives the goodness-of-fit q, and the final column gives the mass estimate and uncertainty from the
proposed fit. The uncertainty is obtained using the jackknife method. In this example, we choose
the fit 4 ≤ z ≤ 15 as described in the text and displayed in the left panel of Fig. (2).

Proposed Fit Included Points q mH

0 ≤ z ≤ 9 10 0.0000 1.2388± 0.0010
1 ≤ z ≤ 9 9 0.0000 0.8134± 0.0019
2 ≤ z ≤ 9 8 0.0001 0.7143± 0.0038
3 ≤ z ≤ 9 7 0.8589 0.6805± 0.0074
4 ≤ z ≤ 9 6 0.9841 0.6643± 0.0189
5 ≤ z ≤ 9 5 0.9447 0.6637± 0.0281
6 ≤ z ≤ 9 4 0.8327 0.6690± 0.0568

Table 4: For the Higgs correlation function plotted in the right panel of Fig. (2), we tabulate here
different 1-mass fits of the form Eq. (10). The first column gives the interval over which the fit is
proposed. The second column gives the number of points included in the fit. The third column
gives the goodness-of-fit q, and the final column gives the mass estimate and uncertainty from the
proposed fit. The uncertainty is obtained using the jackknife method. In this example, we choose
the fit 4 ≤ z ≤ 9 as described in the text and displayed in the right panel of Fig. (2).
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Figure 3: Here we have the same semi-log plots of C(z) for the W and Higgs correlation functions.
The solid lines now display the 2-mass, 4-parameter fits of the form Eq. (11) for the W-mass and
Higgs mass. For the 2-mass fits, fewer initial points have to be excluded.

In this case, we choose to fit over the interval 4 ≤ z ≤ 15, as shown in the left panel
of Fig. (2), since excluding any additional points gains only increased uncertainty.
For the Higgs mass, proposed fits are given in Table (4). The goodness-of-fit is
optimized if we fit over the interval 4 ≤ z ≤ 9, as shown in the right panel of Fig. (2).
Excluding an additional point would give us an even lower mass estimate but also an
unacceptable increase in uncertainty.

3.4.3 2-mass Fit

As discussed in Section 2.3, we also perform mass estimates by using a 2-mass, 4-
parameter fit of the form

C(nt) ≃ A0e
−m0nt + A1e

−m1nt .

In practice, to account for the finite time extension and periodic boundary conditions,
we fit to

C(z) = A1

[
e−mz + e−m(Nt−z)

]
+ A2

[
e−m′z + e−m′(Nt−z)

]
, (11)

where our parameter of primary interest is the smaller mass m. This mass estimate
is no longer an upper bound.

As with the 1-mass fit, we again use the Levenberg-Marquardt least squares fit.
Again, the error bars are computed via jackknife resampling, and now we correct
for bias in the estimator by performing a second level jackknife resampling. When
choosing the best fit, we again look at the goodness-of-fit defined by Eq. (8). We
also compare the 2-mass fit with the 1-mass fit, checking that the 2-mass fit is within
the margin of error of the 1-mass fit. Examples of 2-mass fits are shown in Fig. (3).
These are from the same 123 × 64 simulation with β = 2.30 and κ = 0.404 as used in
previous examples.
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Proposed Fit Included Points q mW

0 ≤ z ≤ 15 16 0.000 0.4873± 0.0037
1 ≤ z ≤ 15 15 0.993 0.4651± 0.0029
2 ≤ z ≤ 15 14 0.991 0.4633± 0.005
3 ≤ z ≤ 15 13 0.991 0.47± 0.13

Table 5: For the W correlation function plotted in the left panel of Fig. (3), we tabulate here different
2-mass fits of the form Eq. (11). The first column gives the interval over which the fit is proposed.
The second column gives the number of points included in the fit. The third column gives the
goodness-of-fit q, and the final column gives the mass estimate and uncertainty from the proposed
fit. These estimates are bias corrected using the jackknife method, and the uncertainty is obtained
from a second level jackknife resampling. In this example, we choose the fit 1 ≤ z ≤ 15 as described
in the text and displayed in the left panel of Fig. (3).

Proposed Fit Included Points q mH

0 ≤ z ≤ 9 10 0.28 0.6894± 0.0093
1 ≤ z ≤ 9 9 0.988 0.666± 0.019
2 ≤ z ≤ 9 8 0.944 0.67± 0.31
3 ≤ z ≤ 9 7 0.952 0.665± 0.083

Table 6: For the Higgs correlation function plotted in the right panel of Fig. (3), we tabulate here
different 2-mass fits of the form Eq. (11). The first column gives the interval over which the fit is
proposed. The second column gives the number of points included in the fit. The third column
gives the goodness-of-fit q, and the final column gives the mass estimate and uncertainty from the
proposed fit. These estimates are bias corrected using the jackknife method, and the uncertainty is
obtained from a second level jackknife resampling. In this example, we choose the fit 1 ≤ z ≤ 9 as
described in the text and displayed in the right panel of Fig. (3).

We again exclude C(z > 15) from the fit for the W mass and C(z > 9) from the
fit for the Higgs mass, like we did for the 1-mass fits and for the same reason. For the
2-mass fits, fewer initial points have to be excluded. Again, we look at the goodness-
of-fit to determine whether to exclude an initial point. Proposed fits are given in
Table (5) for the W mass and in Table (6) for the Higgs mass. For the W mass,
we see that the goodness-of-fit is optimized if we fit over the interval 1 ≤ z ≤ 15,
as shown in the left panel of Fig. (3). For the Higgs mass, the goodness-of-fit is
optimized if we fit over the interval 1 ≤ z ≤ 9, as shown in the right panel of Fig. (3).

3.4.4 Comparing Estimators

We have described three different mass estimators: the ratio fit, the 1-mass fit, and
the 2-mass fit. How do they compare, and what are the benefits and drawbacks of
each?
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For the ratio fit, we know that for large z,

m0 ≃ ln

[
C(z)

C(z + 1)

]
.

Here, the estimate is an upper bound. Ideally, one could get a best estimate of
m0 simply by plugging the two points with largest z into this formula. However,
as detailed earlier, large z brings along large statistical error in C(z). Fortunately,
the logarithm of the ratio decays quickly to near the asymptotic value before the
statistical errors grow too large. Thus, one can get an estimate of m0 by examining
the middle values. A simple estimate of m0 is obtained by selecting the point with the
least upper error bar. A better method, and the one we used here, is to exclude initial
points and fit a horizontal line to the remaining points as illustrated in Fig. (1). The
criteria for excluding an initial point, described in Section 3.4.1, include maximizing
the goodness-of-fit given by Eq. (8) and minimizing the mass estimate.

For the 1-mass fit, we fit C(z) to a function of the form

Ae−m0z,

to estimate m0. The estimate is again an upper bound. Because our fit neglects the
contribution of higher energy states, we typically have to exclude the first points. It
is only for large z that the lowest energy state dominates. On the other hand, C(z)
has large uncertainty for large z. The error and an estimate of the bias is calculated
using a jackknife approach. Mostly, the bias is small for the 1-mass fits, so no bias
correction is made.

For the 2-mass fit, we fit C(z) to a function of the form

A0e
−m0z + A1e

−m1z, m1 > m0,

to estimate m0. Now the estimate is no longer an upper bound. In principle, this
is a more reliable estimator because it includes the second exponential term. With
the 2-mass fit, fewer initial points have to be excluded from the fit. For large z, the
same statistical error occurs as with the 1-mass and ratio fits. Again, the error and
an estimate of the bias is calculated using a jackknife approach. With the 2-mass fit,
the bias is too large to ignore, so a bias corrected estimator is used. The statistical
error of these estimates is calculated using a second level jackknife analysis.

The downside of all three estimators is that a lot of time is spent checking the
quality of fits and manually adjusting them. These manual adjustments are unavoid-
able particularly for the 1-mass and 2-mass estimators, which cannot be automated in
a straightforward manner. If time is an issue or if there is too much data to analyze
manually, the ratio fit seems the most attractive estimator. As discussed in Sec-
tion 3.4.1, points z > z′, where z′ is the smallest z for which C(z)/C(z + 1) < 1, are
automatically discarded. In our case, with 123×64 lattices, an automated fit over the
interval ⌊z′/2⌋ ≤ z ≤ z′ provided quick and reasonably precise results. However, for
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the most precise results, the choice of fitting interval depends on the goodness-of-fit
and the magnitude of the mass estimate as described in Section 3.4.1.

To get a sense of the consistency between the three estimators, we compare the
mass estimates from all three estimators for a number of data points. Ten simulations
were performed on 123 × 64 lattices, with β = 2.30, and 0.401 ≤ κ ≤ 0.411 (Run
times are discussed in Section 4). For the ratio and 1-mass fits, the error bars were
obtained via the jackknife method. For the 2-mass fit, the estimate was first bias
corrected via the jackknife method, and the error bar was obtained via a second level
jackknife analysis.

The results for the W mass are tabulated in Table (7) and displayed in Fig. (4).
For any given κ, we see that the three different estimators tend to be within error
bars of each other. Even when they are not, the difference does not appear to be
statistically significant. For a more objective appraisal, we use the Gaussian difference
test discussed in Section 3.1. The results are given in the last three columns of
Table (7). For example, to compare mW = 0.4670 ± 0.0076 from the ratio fit and
mW = 0.4696±0.0033 from the 1-mass fit, we compute Q defined in Eq. (6). For this
example, we find that Q = 0.75. We compare all of the mass estimates in this manner.
Column QR1 compares the ratio fit and 1-mass fit estimates, column QR2 compares
the ratio fit and 2-mass fit estimates, and column Q12 compares the 1-mass fit and
2-mass fit estimates. We find that Q ≥ 0.05 for all of these, so we conclude that
the systematic error, due to different fitting procedures, is smaller than a reasonable
statistical error. We also see that the error bars on the estimates from the ratio fit
tend to be larger than for the other two estimators, so at least for the W mass, we
get more precise results by using the 1-mass or 2-mass estimator.

The results for the Higgs mass are tabulated in Table (8) and displayed in Fig. (5).
For any given κ, we again see that the three different estimators tend to be within
error bars of each other. For a more objective appraisal, we again use the Gaussian
difference test discussed in Section 3.1. The results are given in the last three columns
of Table (8). Column QR1 compares the ratio fit and 1-mass fit estimates, column
QR2 compares the ratio fit and 2-mass fit estimates, and column Q12 compares the
1-mass fit and 2-mass fit estimates. We find that Q ≥ 0.05 for all of these, so we
conclude that our three estimators are also consistent for the Higgs mass. For the
Higgs mass, we see that the error bars on the estimates from the ratio fit tend to be
smaller than for the other two estimators. So, for the Higgs mass, we get more precise
results by using the ratio fit. This occurs because mH is larger than mW , so there is
faster falloff for the correlation function.

These comparisons show that there is good consistency between the three different
estimation methods. There is not always a clear reason to prefer one estimator over
another, yet they are not redundant. Having three different but consistent estimators
at one’s disposal gives a double and triple-check on mass estimates. Furthermore,
in specific cases, one estimator may outperform the others. In the comparison of
the W-mass estimates given above, the ratio fit had larger error bars, suggesting
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Ratio Fit 1-mass Fit 2-mass Fit Gaussian Differences
κ mW ∆mW mW ∆mW mW ∆mW QR1 QR2 Q12

0.401 0.4670 0.0076 0.4696 0.0033 0.4608 0.0041 0.75 0.47 0.09
0.402 0.4471 0.0110 0.4666 0.0052 0.4676 0.0043 0.11 0.08 0.88
0.403 0.4647 0.0047 0.4656 0.0032 0.4672 0.0036 0.87 0.67 0.74
0.404 0.4666 0.0044 0.4651 0.0035 0.4651 0.0029 0.79 0.78 1.00
0.405 0.4612 0.0065 0.4694 0.0040 0.4698 0.0031 0.28 0.23 0.94
0.406 0.4552 0.0088 0.4604 0.0038 0.4544 0.0064 0.59 0.94 0.42
0.407 0.4537 0.0088 0.4595 0.0054 0.4581 0.0072 0.57 0.70 0.88
0.408 0.4694 0.0062 0.4685 0.0046 0.4752 0.0026 0.91 0.39 0.20
0.410 0.4797 0.0033 0.4798 0.0029 0.4784 0.0026 0.98 0.76 0.72
0.411 0.4516 0.0134 0.4696 0.0038 0.4584 0.0091 0.20 0.67 0.26

Table 7: Here we compare the three fits by estimating the W-mass, mW , at various values of κ.
Each was performed on a 123 × 64 lattice with β = 2.30. The first column gives the value of κ, the
next two give the mass estimate and statistical error of the ratio fit estimator, the next two give the
mass estimate and error of the 1-mass fit estimator, and the next two give the mass estimate and
error of the 2-mass fit estimator. The last three columns give the Gaussian differences between the
estimates. Column QR1 compares the ratio fit and 1-mass fit estimates, column QR2 compares the
ratio fit and 2-mass fit estimates, and column Q12 compares the 1-mass fit and 2-mass fit estimates.
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Figure 4: A plot of the W mass, mW , versus κ. Each was performed on a 123 × 64 lattice with
β = 2.30. The results of each of the three estimators are plotted for comparison with each other.
For any given κ, the three different estimators tend to agree within error bars. Note: For example,
the first three points are all at κ = 0.401. They are slightly displaced from each other so their error
bars can be differentiated. The best estimate, taking into consideration the magnitude of the mass
estimate and its uncertainty, is highlighted in red.
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Ratio Fit 1-mass Fit 2-mass Fit Gaussian Differences
κ mH ∆mH mH ∆mH mH ∆mH QR1 QR2 Q12

0.401 0.513 0.020 0.532 0.020 0.528 0.024 0.50 0.63 0.90
0.402 0.589 0.015 0.586 0.021 0.579 0.026 0.91 0.74 0.83
0.403 0.590 0.020 0.618 0.018 0.617 0.027 0.30 0.42 0.98
0.404 0.665 0.014 0.664 0.019 0.666 0.019 0.97 0.97 0.94
0.405 0.695 0.017 0.691 0.025 0.691 0.031 0.89 0.91 1.00
0.406 0.756 0.013 0.756 0.020 0.754 0.028 1.00 0.95 0.95
0.407 0.777 0.011 0.748 0.026 0.752 0.031 0.30 0.45 0.92
0.408 0.800 0.010 0.796 0.014 0.8083 0.009 0.82 0.54 0.46
0.410 0.833 0.013 0.830 0.016 0.803 0.036 0.88 0.43 0.49
0.411 0.878 0.020 0.905 0.012 0.882 0.016 0.25 0.88 0.25

Table 8: Here we compare the three fits by estimating the Higgs-mass, mH , at various values of κ.
Each was performed on a 123 × 64 lattice with β = 2.30. The first column gives the value of κ, the
next two give the mass estimate and statistical error of the ratio fit estimator, the next two give the
mass estimate and error of the 1-mass fit estimator, and the next two give the mass estimate and
error of the 2-mass fit estimator. The last three columns give the Gaussian differences between the
estimates. Column QR1 compares the ratio fit and 1-mass fit estimates, column QR2 compares the
ratio fit and 2-mass fit estimates, and column Q12 compares the 1-mass fit and 2-mass fit estimates.
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Figure 5: A plot of the Higgs-mass mH versus κ. Each was performed on a 123 × 64 lattice with
β = 2.30. The results of each of the three estimators are plotted for comparison with each other. For
any given κ, the three different estimators tend to agree to within error bars. Note: For example,
the first three points are all at κ = 0.401. They are slightly displaced from each other so their error
bars can be differentiated. The best estimate, taking into consideration the magnitude of the mass
estimate and its uncertainty, is highlighted in red.
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better results if one of the other two estimators is used. However, for the Higgs mass
estimates, the opposite was true. The ratio fit tended to give the smallest error bars,
making it the more attractive estimator for those masses.

4 Application of Mass Estimates

A principal goal of the larger LGT project at FSU is to search for numerical evi-
dence in favor or against a pseudo continuum limit [ma(β)] → 0 with the mass ratio
mH/mW = 1.6 held constant near the known [1] experimental value. MCMC sim-
ulations are used to obtain correlation functions and then various mass estimators
can be used to numerically estimate the Higgs and W masses, mH and mW . In my
project, the investigation is limited to the λ→ ∞ limit. Exploring the full parameter
space was not possible in the time at our disposal.

Each data point was obtained from an MCMC Fortran simulation. These simula-
tions are resource intensive, but the run time is reduced by parallelization employing
Message Passing Interface (MPI). Even so, a relatively small 83 × 64 simulation with
216 equilibrating sweeps followed by 64 bins of 210 measurements with 16 sweeps be-
tween measurements takes about a week running on eight processors. To reduce the
error bars in our results, we often ran simulations that took several times longer.
When statistical uncertainty necessitated it, we ran much larger simulations at the
National Energy Research Scientific Computing Center (NERSC).

From each MCMC simulation, we can estimate the mass ratio mH/mW for the
given value of β and κ by applying one or more of the mass estimators. Recall that
β is inversely proportional to the bare coupling constant g. When, as in pure SU(2)
LGT, the lattice spacing a decreases with decreasing g, the limit β → ∞ is equivalent
to the pseudo continuum limit amW → 0. If amW approaches a nonzero value when
β → ∞, then the continuum limit does not exist. This would suggest a first order
phase transition at that energy scale and could be a signal for new physics.

The mass ratio estimates depend not only on β but also on the hopping parameter
κ. For a given lattice size (e.g. 123×64), we choose a β value. Then we run a number
of MCMC simulations at different κ values. Each simulation gives us a mass ratio
estimate mH/mW , so after running a number of simulations with fixed β, we can plot
the mass ratio versus κ. Assuming that the mass ratio as a function of κ is continuous
and smooth, we can apply a linear fit in a neighborhood of mH/mW = 1.6, as shown
in Fig. (6). Where this linear fit intersects the horizontal line mH/mW = 1.6, we
find the actual value of κ for that value of β. By repeating this process for different
values of β, we obtain a relation between β and κ for a given lattice size. In Fig. (6),
the mass ratio is plotted versus κ for β ranging from 2.3 to 2.8. Those simulations
were performed on lattices of size 123 × 64. Running additional simulations on larger
lattices (e.g., 163× 64 and 203× 64 lattices) is necessary to estimate finite lattice size
corrections.

A plot of the mass ratio estimates mH/mW versus amW is shown in Fig. (7). Each
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values of β. The horizontal line at mH/mW = 1.6 is the known value of the mass ratio. Each point
is the output of an MCMC simulation on a 123 × 64 lattice. The 1-mass estimator was used to
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cluster in this figure is a set of mass ratio estimates with various κ and a fixed β. The
value of β for each cluster is noted in the legend. Recall the pseudo continuum limit
amW → 0 as β → ∞. This plot shows an obvious decrease in amW when β goes from
2.3 to 2.4. As β increases beyond that, amW decreases further, but the data becomes
noisy. This plot suggests that amW may converge to a positive value near 0.25, that
is, there may be no continuum limit. Further investigation is necessary before we
can report evidence for or against the limit amW → 0. In particular, simulations
must be performed at larger values of β, and finite lattice size corrections must be
controlled. For this purpose, the statistical noise must be reduced by performing
larger simulations.

5 Summary and Conclusions

In quantum field theory (QFT), the physics is contained in infinite-dimensional path
integrals. In lattice gauge theory (LGT), the four-dimensional Minkowski spacetime of
QFT becomes a four-dimensional Euclidean spacetime on a finite, discrete lattice with
lattice sites separated by distance a. Masses can now be extracted from correlation
functions of the form

C(nt) =
∑

k

〈0|Ô|k〉 〈k|Ô†|0〉 e−ntEk = A0e
−m0nt + A1e

−m1nt + · · · .

The quantum continuum limit is obtained by driving the couplings of the theory to
their critical values. In this thesis, I performed Markov Chain Monte Carlo (MCMC)
simulations for the SU(2) Higgs model and looked at the pseudo continuum limit
ma→ 0.

The correlation functions can be computed using MCMC simulations. Then parti-
cle masses can be estimated from the exponential falloff of those correlation functions
using a number of different estimators. Mass estimates have several important uses
in LGT. For example, mass ratios can be used to investigate the existence of a con-
tinuum limit. Such an investigation could reveal a phase transition that would imply
new physics at some scale.

In this thesis, I discussed three different mass estimators. Taking the natural
logarithm of the ratio of consecutive correlation functions gives us the “ratio fit”
estimator

m(z) = ln

(
C(z)

C(z + 1)

)
→ m0.

The function m(z) approaches the mass of interest, m0, in the large z limit. This
function decays quickly to the asymptotic limit, but the statistical error also grows
quickly. A suitable estimate of m0 is obtained by discarding the first points of m(z)
and fitting a horizontal line to the remaining points. The “1-mass fit” is obtained by
fitting the correlation function C(z) to an exponential function

C(z) ≃ Ae−mz,
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to estimate m0 ≃ m. This fit neglects the contribution of higher energy states, so we
typically have to exclude the first points. It is only for large z that the lowest energy
state dominates. The “2-mass fit” is obtained by fitting C(z) to a function of the form

C(z) ≃ A0e
−mz + A1e

−m1z,

to estimate m0 ≃ m. With the 2-mass fit, fewer initial points have to be excluded. For
large z, the same statistical error occurs as with the 1-mass and ratio fits. The error
of each estimator is calculated using a jackknife approach and the bias is estimated.
For the ratio and 1-mass fits, no bias correction is made. For the 2-mass fit, the bias
is too large to ignore, so a bias corrected estimator is used. The statistical error is
then calculated using a second level jackknife analysis.

In this thesis, using data from ten simulations performed on 123 × 64 lattices,
I compared the three mass estimators and showed that they are consistent. With
each estimator, I estimated the Higgs and W boson masses for each of the ten runs.
Although they performed similarly, each estimator exhibited different qualities. I
found that in specific cases, one may outperform the other two. For the W mass, I
found that the 1-mass and 2-mass estimators were marginally more precise. For the
Higgs mass, I found the opposite to be true. The ratio fit was more precise than
either the 1-mass or 2-mass estimator. Even if one doesn’t need a triple check, having
three consistent mass estimators gives one a choice in selecting the best one for the
task.
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