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Abstract 

Using integration by parts identities, we construct a parametrization of amplitude integrands 
for a two-loop propagator structure. This parametrization directly reduces all related Feynman 

integrals to master integrals. This is a so-called master-surface integrand parametrization, where 

functions integrate either to master integrals or to zero. Our work has direct applications to the 

study of the conservative gravitational potential in a black hole binary system, in particular to its 
calculation at third order in Newton’s constant O(G3) employing scattering amplitude techniques 
and the generalized unitarity method. 
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1 Introduction 

The merger of black holes in a binary system is one of the most extreme events in the cosmos. The merger 
is separated into three phases: inspiral, merger, and ringdown. During inspiral, the two black holes in 

the bounded orbit spiral inwards and converge on one another. During merger, the event horizons of 
the two black holes make contact and coalesce into a single body. During ringdown, the merged black 

hole relaxes into a stable state. Each stage of this process produce ripples in spacetime, similar to a 

tossed stone causing ripples in a pond. These ripples in spacetime are known as gravitational waves. 
Gravitational wave observatories (like the LIGO experiment) are designed to detect these gravitational 
waves. Figure 1 depicts the process together with the waveform that they produce and that can be 

detected far away by gravitational wave observatories. 

Inspiral Merger Ringdown 

Post F Newtonian 

Theory 
Perturbation 

Theory 

Numerical 
Relativity 

Figure 1: Three stages of the black hole merger: (i) Inspiral, (ii) Merger, (iii) Ringdown [5]. 

Recent observations of gravitational waves by LIGO have made precise theoretical calculations of 
the gravitational conservative potential for a compact binary system increasingly valuable. Similar to 

an elementary particle, black holes are described with a mass, spin, and charge. During the inspiral 
stage of the merger, when the distance between the black holes is large with respect to the size of the 

event horizons of the black holes, it becomes possible to treat these black holes like point-like particles. 
In addition, there is common information in the conservative gravitational potential of a bound and 

of an open binary system (for example between two black holes), meaning we can use the potential 
calculated by scattering black holes to learn about the potential between bound binary black hole 

systems. This suggests that we can exploit the tools of Quantum Field Theory (QFT) to compute 

scattering amplitudes to help us solve for the potential between binary bound black hole systems, 
providing us with very precise forms for the gravitational potential V (r). 
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The Feynman diagram before defines the double-box diagram that we study. In the figure, the solid 

double lines represent the point-like massive particles that we use to represent the black holes in the 

scattering process, while the wiggling lines represent graviton (the gravitational force carrier) exchanges. 
In the rest of this document we will focus on an specific analysis related to the precision program for 

gravitational wave astronomy. In calculations done using scattering amplitudes, fundamental building 

blocks are the so called Feynman integrals. We will introduce how these integrals appear in the context 
of perturbative quantum field theory, using scalar field theory and quantum electrodynamics as working 

examples. Afterwards we make and in-depth analysis of the calculus of Feynman integrals, presenting 

the tools required to build a powerful parametrization for the key double-box family of Feynman integrals 
that are required for the calculation of the conservative potential for a compact binary system at O(G3), 
where G is Newton’s constant. The double-box family includes propagators for two types of massive 

particles (representing the black holes being scattered) and massless particles (representing graviton 

exchanges), built from an effective field theory based on the Einstein-Hilbert (EH) Lagrangian. 

2 Basics of Quantum Field Theory 

In studying elementary particles, before we can fuss about the interactions between particles, we first 
get a grasp on how particles behave in the absence of all interactions. In classical mechanics, we do this 
by finding the Lagrangian of this particle. In QFT, we do the same thing, first targeting a free version 

for the Lagrangian density. To build the Lagrangian for relativistic theories of quantum mechanics, we 

build on some of the concepts we learned in our undergraduate quantum mechanics and explore their 
shortcomings in relativistic extensions. Then we will develop new theoretical frameworks until we arrive 

at a Lagrangian for free field theories from which we will develop our understanding of QFT. 

2.1 Relativistic Approach to Quantum Mechanics 

When you are introduced to elementary particles in undergraduate physics, you are typically taught 
about them in the context of Schrödinger’s equation: 

ih̄ 
∂ 

∂t 
Ψ (x⃗, t) = 

 

� 
h̄ 2 

2m 
∇ 2 + V 

 

Ψ (x⃗, t) . 

In high-energy physics, we typically use what are called natural units. Natural units set h̄ = c = 1, and 

we will use such units throughout the rest of the paper unless otherwise specified. We also typically 

analyze particles that are “free”, i.e. in the absence of a potential, so that V = 0. Schrödinger’s 
equation for a free particle using natural units is expressed as: 

i 
∂ 

∂t 
Ψ (x⃗, t) = � 

1 

2m 
∇ 2 Ψ (x⃗, t) . (2.1) 

Such an equation has plane-wave solutions of the form 

Ψ ∝ e i(p⃗·x⃗�Et) , (2.2) 

where E = p2 

2m . These types of solutions will play a critical role later on. 
Schrödinger’s equation works well for analyzing low-energy systems; however, in the high-energy 

regime, we must introduce special relativity into the picture. When thinking in terms of relativity, 
Schrödinger’s equation is insufficient for several reasons. 

First, we note that in special relativity time and space are treated under equal footing, and put 
together into 4-vectors xµ = (t, ⃗x) representing spacetime. Therefore, we should expect that any funda-
mental differential equation would have the same order in both space in time. However, we can see in 

equation (2.1) that Schrödinger’s equation is first-order in time derivatives and second-order in space 

derivatives. This means that Schrödinger’s equation is not relativistically covariant. 
Furthermore, there is a problem relating to the probability of finding a particle in quantum mechan-

ics. The probability density of a particle is given by, 

ρ (x⃗, t) = |Ψ (x⃗, t) |2 . (2.3) 
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We can integrate equation (2.3) over all of space to find the probability of finding a particle anywhere 

in space, 
 

|Ψ (x⃗, t) |2 dV . (2.4) 

When integrating over all of space, this equation is normalized to one, as we expect the particle must 
be somewhere. Generically, however, equation (2.4) depends on time. This suggests that either the 

probability of finding the particle should change with time, or the normalization should change over 
time. However, Schrödinger’s equation actually ensures conservation of this total probability. Consider 
the 4-vector current defined as 

jµ = 
 
ρ, j⃗ 
 
= 

 

|Ψ|2 ,� 
i 

2m 
(Ψ ∗ ∇Ψ � Ψ∇Ψ ∗) 

 

. (2.5) 

Schrödinger’s equation implies that this current is conserved, that is ∂µj
µ = 0. So even if we integrate 

over space 
 
∂µj

µdV = 0. From this, we conclude that 

d 

dt 

 

|Ψ|2 dV 

 

= 0 , (2.6) 

because the extra term should be a surface term that should vanish. This means that 
 
|Ψ|2 dV is 

constant and normalizable to unity. While conservation of the total probability might be seen as a good 

feature, it leads to the downfall of this version of quantum mechanics in the relativistic regime. 
As observed through the photoelectric effect, in real life particles appear and disappear. If we were 

to have sufficient energy in a photon to create an electron-positron pair, then the initial and final 
probability of finding an electron would be given by 

 

|Ψ|2 dV 

 

initial 

= 0 , (2.7) 

and 
 

|Ψ|2 dV 

 

final 

= 1 . (2.8) 

However, this violates the conservation of probability current we previously established. Therefore, 
quantum mechanics breaks down in the relativistic regime, where there is enough energy to create new 

particles. This necessitated a new theory to replace non-relativistic quantum mechanics. 

2.1.1 The Klein-Gordon Equation 

We can use some of the information we know from special relativity and quantum mechanics to try 

to find a framework consistent with the two. First, we still favor the existence of plane wave solution, 
equation (2.2), that we saw from quantum mechanics, which we re-express in a covariant form, that is, 
consistent with special relativity, 

ϕ ∝ e i(pµx
µ) , (2.9) 

where we have introduced the momentum 4-vector, p = (E, ⃗p). Second, using the relativistic dispersion 

relation, equation (A.11), we conclude that pµ must fulfill 

pµp
µ = m 2 . (2.10) 

These two expected results can be used to propose a new dynamical equation for the function ϕ, 

� 
∂µ∂

µ + m 2 
 
ϕ (x) = 0 . (2.11) 

This equation is called the Klein-Gordon Equation. This equation presents another problem which is 
perhaps bigger than the problems we faced from Schrödinger’s equation. This equation, for a given 

3-momentum p⃗, has two plane-wave solutions of the form 

ϕ ∝ e i(±Et�p⃗·x⃗) , (2.12) 
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where E = 
 
⃗ p · p⃗ + m2 . These can be seen as positive- and negative-energy solutions of the relativistic 

dispersion relationship. However, if there are particles with unbound negative energy nothing is stopping 

any physical system from decaying into these negative-energy particles. This means that the physical 
system would be unstable [13]! 

2.1.2 The Dirac Equation 

Paul Dirac proposed a dynamics equation that instead of being second-order in the time and space 

derivatives (as the Klein-Gordon equation), it would be first-order in time and space derivatives. It 
would be such that in its square, you would recover Klein-Gordon’s equation. The gave the differential 
equation for the function ψ 

(iγµ∂µ � m) ψ = 0 . (2.13) 

This equation is known as the Dirac Equation. Here ψ is known as the Dirac spinor and is a 4-component 
object. γµ is known as the Gamma matrices which fulfill the property 

{γµ , γ ν } = 2ηµν , (2.14) 

where ηµν is the metric tensor defined in equation (A.5) in the Appendix. In a particular representation 

of the gamma matrices, called the Dirac representation, the gamma matrices take the form 

γ 0 = 

 
1 0 

0 �1 

 

, (2.15) 

γ i = 

 
0 σi 

�σi 0 

 

, (2.16) 

where 1 is the 2 × 2 identity matrix and σi (i = 1, 2, 3) are the Pauli matrices from quantum mechanics. 
If we look for plane wave solutions to the Dirac equation 

ϕ = u (p) e i pµ x
µ 

, (2.17) 

plugging into equation (2.13), we get 

(�γµpµ � m) u (p) = 0 . 

In the reference frame where p⃗ = 0, using E = ±m, we can reduce this to 

� 
�γ 0 E � m 

 
u = 

� 
∓γ 0 m�m 

 
u = 0 . 

For E = +m we get solutions u of the form 

u = 

 





 

A1 

A2 

0 

0 

 







, (2.18) 

and for E = �m we get solutions u of the form 

u = 

 





 

0 

0 

A1 

A2 

 







. (2.19) 

Dirac interpreted these solutions as spin-up (A1) and spin-down (A2) particles (fermions), for the 

E = +m solutions. On the other hand, he introduced the idea of anti-particles (anti-fermions) as 
related to the E = �m solutions. To explain how these negative-energy solutions would not produce 

an unstable theory, Dirac argued that using Pauli’s exclusion principle and assuming the existence of 
what is known as the Dirac sea, where these negative energy states are by default filled, then there 
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could be no transition to them as Pauli’s principle would exclude it. When a photon with sufficient 
energy interacts with the Dirac sea, this negative energy particle is raised to a total positive energy 

state producing a fermion and leaving a “hole” in the Dirac sea. This hole is a new type of particle, 
the anti-particle (anti-fermion). To maintain local conservation of charge, these anti-fermions must 
have opposite charges as their fermion counterparts [13]. This interpretation can help us describe some 

physical systems, but they are always a type of effective description. 

2.2 Lagrangian Density in Quantum Field Theory 

To overcome the difficulties described before, related to negative-energy solutions to the equations of 
motion of the functions ϕ (for the Klein-Gordon equation) and ψ (for the Dirac equation), we introduce 

the concept of the quantum field. That is, the objects ϕ(x) and ψ(x) are promoted to operators labelled 

by the spacetime argument x. And for them, we build Lagrangian densities, which classically (still 
thinking of ϕ(x) and ψ(x) as functions) give their corresponding equation of motion. 

2.2.1 Scalar Field Theory Lagrangian 

We construct a Lagrangian density for a classical scalar field ϕ of the form: 

L = 
1 

2 
∂ µϕ∂

µϕ � 
1 

2 
m2 ϕ 2 . (2.20) 

This Lagrangian density implies an equation of motion for the field ϕ which is the Klein-Gordon equation 

outlined before. To see this we make use of the Euler-Lagrange equation of motion 

∂L 

∂ϕ 
� ∂µ 

∂L 

∂ (∂µϕ) 
= 0 , (2.21) 

plugging in equation (2.20) into equation (2.21) we get 

∂L 

∂ϕ 
= �m 2 ϕ , 

∂L 

∂ (∂µϕ) 
= 

1 

2 
(∂µϕ + ∂µϕ) = ∂µϕ , 

⇒ �m 2 ϕ � ∂µ (∂
µϕ) = 0 , 

⇒ 
� 
∂µ∂

µ + m 2 
 
ϕ = 0 . (2.22) 

which is just the Klein-Gordon equation, equation (2.11) we introduced before. 

2.2.2 Dirac Lagrangian 

We can also construct a Lagrangian density which implies an equation of motion matching Dirac’s 
equation introduced before. It has the following structure: 

LDirac = ψ 
� 
i/∂ �m 

 
ψ (2.23) 

where ψ = ψ†γ0 and / ∂ = γµ∂µ. This Lagrangian density is a starting point to build one for the theory 

of quantum electrodynamics (QED) as we discuss next. 

2.2.3 Electromagnetic Field Lagrangian 

In QED we wish to study how electrons interact with electromagnetic fields. The Lagrangian associated 

with the electromagnetic field is given by 

LEM = � 
1 

4 
Fµν Fµν , (2.24) 
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where F µν is the electromagnetic field strength tensor, which is defined by 

Fµν ≡ ∂ µAν � ∂ν Aµ . (2.25) 

Here Aµ is electromagnetic four-potential, which combines the scalar and vector potentials for electricity 

and magnetism into a single four-vector, Aµ = (φ, A). From this definition we see that Fµν is a rank-2 

Lorentz tensor with components 

F µν = 

 





 

0 �Ex �E y �Ez 

Ex 0 �Bz B y 

E y Bz 0 �Bx 

Ez �B y Bx 0 

 







. (2.26) 

From the Electromagnetic Field Lagrangian, we are able to recover Maxwell’s equation. Using Fµν , 
Maxwell’s equations in the covariant form are given by 

∂ν F µν = jµ , 

ϵσµνρ∂µF νρ = 0 . 
(2.27) 

where jµ = (ρ, J) and ϵσµνρ is the 4-dimensional Levi-Civita symbol. Using our relations between E 

and B and their scalar and vector potentials, 

E = �∇⃗φ + Ȧ , (2.28) 

B = ∇×A , (2.29) 

we see that equation (2.27), is the same as the Maxwell equations we learned in undergraduate Electricity 

and Magnetism, 
∇ ·E = ρ , 

∇ ·B = 0 , 

∇×E = � Ḃ , 

∇×B = J+ Ė . 

(2.30) 

We will use the Lagrangian LEM in constructing the Lagrangian of QED. 

2.2.4 QED Lagrangian 

To illustrate the building of a quantum field theory, we will use a Lagrangian for the theory of quantum 

electrodynamics (QED). It employs the structure of the Dirac Lagrangian and the electromagnetic field 

Lagrangian introduced before. More precisely, it is given by 

LQED = ψ 
� 
i /D �m 

 
ψ � 

1 

4 
F µν Fµν , (2.31) 

where / D = γµDµ with Dµ = (∂µ � ieAµ). The term ψ /Aψ couples the electron (fermion) from the Dirac 

equation to the photon from Maxwell’s equations and allows us to understand the interaction between 

fermions and the photon, the carrier of the electromagnetic force. We are able to do this because LQED 

is invariant under gauge transformations where both ψ and Aµ transform accordingly. This Lagrangian 

will be used to build up an example of QFT. 

2.3 The Hamiltonian 

While we move forward in the construction of a quantum theory consistent with relativity, we start 
studying the structure of the Hamiltonians for the theories with the Lagrangians that we have introduced 

before. Our Hamiltonian we express in terms of a Hamiltonian density, H, according to 

H = 

 

d 3 xH , (2.32) 
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where the Hamiltonian density, H, is defined by 

H (ϕ, Π) = Π ϕ̇� L , (2.33) 

where Π = ∂L/∂ ˙ ϕ is the conjugated momentum field associated with our Lagrangian and field ϕ. Until 
this point our fields (like ϕ and Π) are classical functions of spacetime. 

2.3.1 Scalar Field Hamiltonian 

For a scalar field Lagrangian, equation (2.20), we start by using the plane wave solution for ϕ, here a 

classical function, 

ϕ(x) = 

 
d3 p 

(2π)
3 
2ω 

 
a (p⃗) e�ipµx

µ 

+ a (p⃗) 
∗ 
e ipµx

µ 
 
, (2.34) 

where a (p⃗) and a (p⃗) 
∗ 
are the coefficients to our plane wave solution, and ω = 

 
|p⃗|2+m2 . We now want 

to promote ϕ to a field, which is an operator labeled by spacetime components. To do so, we make use 

of our canonical quantization commutation relations 

[ϕ (x⃗, t), ϕ (y⃗, t)] = 0, 

[Π (x⃗, t), Π (y⃗, t)] = 0, 

[ϕ (x⃗, t), Π (y⃗, t)] = iδ 3 (x⃗� y⃗) . 

(2.35) 

Through this process we promote a (p⃗) and a (p⃗) 
∗ 
to operators, a⃗ p and a 

†
p⃗. Then, we can express the 

quantum field ϕ as 

ϕi = 

 
d3 p 

(2π)
3 
2ω 

 
ap⃗ e

�ipµx
µ 

+ a 
† 

p⃗ 
eipµx

µ 
 
, (2.36) 

where a⃗ p is the annihilation operator, a 
†
⃗ p is the creation operator. We derive commutator relations for 

our creation and annihilation operators using our canonical commutation relations, equation (2.35), 

[ap⃗, ap⃗ ′ ] = 0,
 
a 
† 

p⃗, a 
† 

p⃗ ′ 

 
= 0, 

 
ap⃗, a 

† 

p⃗ ′ 

 
= (2π)

3 
2ωδ 3 (p⃗� p⃗ ′ ) . 

(2.37) 

The creation and annihilation operators either create one-particle states or annihilate the “ground state” 

of our system, the ket |0⟩, which we call the “vacuum”: 

ap⃗|0⟩ = 0, 

a 
† 

p⃗|0⟩ = |p⃗⟩. 
(2.38) 

From these results, using equation (2.32) and (2.33) and simplifying, we can solve for the Hamiltonian 

to be 

H = 

 
d3 p 

(2π)
3 
2ω 
ωa† 

p⃗ 
ap⃗ , (2.39) 

Where H is normal ordered, typically denoted by : H :, where the creation operators are listed before 

the annihilation operators [13]. a 
†
p⃗a⃗ p is known as the number operator as it tells us the number of 

particles with momentum p in our system. 

2.3.2 Dirac Hamiltonian 

For LDirac our Dirac spinor is expressed as 

ψi(x) = 


s=± 

 
d3 p 

(2π)
3 
2ω 

 
c (p⃗)

s 
ui (p⃗)

s 
e�ipµx

µ 

+ d (p⃗)
s∗ 
vi (p⃗)

s 
eipµx

µ 
 
, (2.40) 
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where ui (p⃗)
s 
and vi (p⃗)

s 
are spinor coefficients and c (p⃗)

s 
and d (p⃗)

s∗ 
are coefficients to our plane wave 

solution. Using the same process as with a scalar particle of promoting the classical function ψ to a 

quantum field by imposing the canonical commutation relations, 

ψi = 


s=± 

 
d3 p 

(2π)
3 
2ω 

 
cs 
p⃗ u s 

i,p⃗ e
�ipµx

µ 

+ d 
s† 

p⃗ 
v s 
i,p⃗ e

ipµx
µ 
 
, (2.41) 

where usi,p⃗ and vs 
i,p⃗ are spinors and cs⃗ p and ds† 

p⃗ are the annihilation and creation operators for two 

separate particles. We derive the Hamiltonian for the Dirac Lagrangian to be 

H = 

 
d3 p 

(2π)
3 
2ω 
ω 
 
c † 

p⃗ 
cp⃗ � dp⃗ d

† 

p⃗ 

 
. (2.42) 

However, from our understanding that the Hamiltonian relates to energy from Quantum Mechanics, 
the � in this expression once again suggests negative energy. This is clearly nonphysical, so Dirac made 

the “bold step” and concluded that for spinor fields, our commutator operator is replaced with the 

anti-commutator operator, which implies for the pair of creation/annihilation operators 

{cp⃗s , c s
′ † 

p⃗ ′ } = (2π)
3 
2ωδ 3 (p⃗ � p⃗ ′ ) δ ss ′ 

, 

{dp⃗s , d 
s′ † 

p⃗ ′ } = (2π)
3 
2ωδ 3 (p⃗ � p⃗ ′ ) δ ss ′ 

, 
(2.43) 

where any other combination of anti-commutators vanish. Under this prescription, we find the true 

Hamiltonian corresponding to the Dirac Lagrangian, 

H = 

 
d3 p 

(2π)
3 
2ω 
ω 
 
c † 

p⃗ 
cp⃗ + d† 

p⃗ 
dp⃗ 

 
. (2.44) 

From this, we understand that c †⃗ p and c⃗ p are the creation and annihilation operators associated with the 

fermion and d†⃗ p and d⃗ p are the creation and annihilation operators associated with the anti-fermion. In 

this description all single-particle (or single anti-particle) states (and therefore all multiparticle states) 
have positive energy. 

2.3.3 EM Hamiltonian 

When we compute the Hamiltonian density of our LEM we obtain, 

H = 
1 

2 

 
|E⃗|2+| ⃗B|2�A0 ⃗∇ · E⃗ 

 
. (2.45) 

As we can see the A0 component of our field is non-dynamical, it has in particular no time derivatives. 
From this, we end up with a quantum field for the photons as 

Ai = 


s 

 
d3 p 

(2π)
3 
2ω 

 
a s 
p⃗ ϵ

s∗ 
i e�ipµx

µ 

+ a 
s† 

p⃗ 
ϵs 
i e 

ipµx
µ 
 
, (2.46) 

where asp⃗ and a 
s† 

p⃗ are the annihilation and creation operators for the photon and ϵs 
i is the polarization 

vectors for the photon. 
In a very similar way to the scalar field, we arrive at the normal ordered Hamiltonian for the 

electromagnetic field to be 

H = 

 
d3 p 

(2π)
3 
2ω 

ωa† 

p⃗ 
ap⃗ , (2.47) 

with ω = 
 
|p⃗|2 . We now wish to add operators to our Lagrangians which will allow interactions among 

fields. 
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2.4 Theories with Interactions 

2.4.1 Interaction Picture 

Using operator algebra in quantum mechanics, states can evolve in the following manner 

|ϕ (t)⟩ = U (t, t0) |ϕ (t0)⟩ , (2.48) 

where |ϕ (t0)⟩ is the initial sate, |ϕ (t)⟩ is the final state, and U (t, t0) is so-called evolution operator 
which translates between them. 

The probability of finding a particle initially in the state |ϕ (t0)⟩ later on in the state |ψ (t)⟩ is given 

by 

Prob = |⟨ψ (t)|U (t, t0) |ϕ (t0)⟩| 2 . (2.49) 

The Schrödinger picture, where states evolve with time and operators do not, this U (t, t0) is related 

to the Hamiltonian by, 

i 
d 

dt 
U (t, t0) = HU (t, t0) . (2.50) 

which we solve by, 
U (t, t0) = e�iH(t�t0) . (2.51) 

In the Heisenberg picture, where operators evolve with time and states do not, we find that states in 

this picture our related to states in the Schrödinger picture by 

|ϕ⟩H = e iH(t�t0)|ϕ⟩s . (2.52) 

Operators in the Heisenberg picture are related to operators in the Schrödinger picture by 

OH = e iH(t�t0)OSe
�iH(t�t0) , (2.53) 

where OH is some generic time-dependent operator in the Heisenberg picture corresponding to a time-
independent operator OS in the Schrödinger picture. 

There is another picture particularly helpful for studying theories with interactions (extra operators 
added to a given Hamiltonian). In the so-called interaction picture, we split the interaction term of our 
Hamiltonian, H1, from the free term of our Hamiltonian, H0, so that 

H = H0 + H1 . (2.54) 

We then define how states in the interaction picture are related to states in the Schrödinger picture by 

|ϕ⟩I = e iH0t|ϕ⟩s , (2.55) 

where we have set t0 = 0 without loss of generality. Now 

OI = e iH0t OSe
�iH0t . (2.56) 

The corresponding evolution operator UI (t, t0) in this picture fulfills 

i 
d 

dt 
UI (t, t0) = HI UI (t, t0) 

d 

dt 
UI (t, t0) = �iHI UI (t, t0) 

(2.57) 

where HI is H1 in the interaction picture. By integration, we then find 

UI (t, t0) = 1 � i 

 t 

t0 

dtHI (t) UI (t, t0) . (2.58) 
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2.4.2 Dyson Series 

We to solve for UI iteratively using equation (2.58), and get 

UI (t, t0) = 1 � i 

 t 

t0 

dt1HI (t1) + (�i)2 

 t 

t0 

dt1 

 t1 

t0 

dt2HI (t1) HI (t2) + ... 

+ (�i)m 

 t 

t0 

dt1... 

 tm�1 

t0 

dtmHI (t1) ...HI (tm) + . . . . 

(2.59) 

We then introduce a time ordering operator, T, such that 

 t 

t0 

dt1... 

 tm�1 

t0 

dtmHI (t1) ...HI (tm) = 
1 

m! 

 t 

t0 

dt1... 

 tm�1 

t0 

dtmT {HI (t1) HI (t2) ...HI (tm)} , (2.60) 

where T {HI (t1) HI (t2) ...HI (tm)} takes the form 

T {HI (t1) HI (t2) ...HI (tm)} = 

 




 







HI (t1) HI (t2) ...HI (tm) if t1 > t2 > ... > tm 

HI (t2) HI (t1) ...HI (tm) if t2 > t1 > ... > tm 

. . . 

(2.61) 

With this we have the formal solution for UI as a Dyson series: 

UI (t, t0) = T exp 

 

�i 
 t 

t0 

dt ′ HI (t 
′ ) 

 

. (2.62) 

We can now use this to analyze interactions and study the evolution of asymptotic states |i⟩ and |f⟩, 
where |i⟩ is the initial state t → �∞ and |f⟩ is the final state t → ∞. The transition amplitude between 

|i⟩ and |f⟩, is given by 

A = ⟨f |UI (+∞, �∞) |i⟩ . (2.63) 

2.4.3 Interaction Example: e+ e� production 

To get a better sense of interactions, we will analyze e+ e� production from a photon. 

γ (pγ ) → e+ (p+) e
� (p�) , (2.64) 

so our initial and final states are given by 

|i⟩ = a† 
pγ 
|0⟩ , 

|f⟩ = c† 
p� 
d† 
p+ 

|0⟩ . 
(2.65) 

Starting from the QED Lagrangian we will try to get our interaction term. Starting with our QED 

Lagrangian, equation (2.31), and applying the definition of /D, 

LQED = ψ 
� 
i /D �m 

 
ψ � 

1 

4 
F µν Fµν , 

LQED = ψ 
� 
i/∂ �m 

 
ψ � 

1 

4 
F µν F µν � ieψ /Aψ, (2.66) 

where, e is the charge of our fermion, here an electron. Our first term is our free fermion term, the second 

term is our free photon term, and our last term is our interaction term. To explore this interaction, we 

apply a perturbation theory. To the zeroth order for “e”: 

⟨f |U |i⟩O(0) = ⟨0|c p� 
d p+ 

a† 
pγ 
|0⟩ 

= ⟨0|c p� 
a† 
pγ 
d p+ 

|0⟩ 
= 0 . 

(2.67) 
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As we could guess, without any interactions, there is no way a photon could become a fermion and 

anti-fermion. To the first order for “e”: 

⟨f |U |i⟩O(e1 ) = �i⟨0|c p� 
d p+ 

 

d 4 xHI 

 

a† 
pγ 
|0⟩ 

= �i⟨0|c p� 
d p+ 

 

d 4 x (ie) ψAµγ
µψ 

 

a† 
pγ 
|0⟩ . 

(2.68) 

plugging in our Fourier mode expansion, only the a piece from Aµ and the d† and c† piece from the 

ψ and ψ contribute. The other terms will commute and annihilate with |0⟩ or ⟨0|. After using our 
commutator relationships to simplify the contributing terms, we arrive to 

⟨f |U |i⟩O(1) = e 

 

d 4 x (ie) ϵsγ 
µ (pγ ) u s� 

p� 
γµv s+ 

p+ 
e�i(pγ �p��p+)·x 

= e (2π)
4 
δ 4 (pγ � p+ � p�) ϵ

sγ 
µ u s� 

p� 
γµv s+ 

p+ 
. 

(2.69) 

Notice that this result nicely imposes momentum conservation [13]. In QFT, we define an object, called 

the “scattering amplitude”, M, such that 

⟨f |U |i⟩ = (2π)
4 
δ 4 (pγ � p+ � p�) iM . (2.70) 

Therefore for our example, 
iM = ϵsγ 

µ u s� 
p� 

(�ieγµ) v s+ 
p+ 
. (2.71) 

We interpret the ϵ
sγ 
µ term as corresponding to an initial state external photon, u 

s�
p� as corresponding 

to a final state external fermion, and v 
s+ 
p+ as corresponding to a final state external anti-fermion. We 

describe (�ieγµ) as corresponding to a “vertex interaction”. Graphically, we understand this scattering 

amplitude to be associated with the Feynman Diagram: 

More complex processes in QED will have more and more insertions of the vertex interaction, producing 

many more Feynman diagrams. This procedure gets systematized by the so-called Feynman rules of 
QED which we describe next. 

2.5 Feynman Diagrams and Feynman Rules 

We can now study interactions between fermions and photons. These interactions can be represented 

with figures known as Feynman Diagrams. It is often easier to construct these graphical representations 
of an interaction and then recover the corresponding scattering amplitude from the pictures. 

2.5.1 Feynman Diagrams 

Feynman diagrams are constructed by connecting external initial and final particles. For example, for 
electron–positron scattering all possible Feynman diagrams can be represented in the diagram below 

where all possible interactions are enclosed in the circular blob. 

The interactions enclosed in the circular blob follow the following rules: 
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All: 

The connection happens in all possible topologically inequivalent manners. For example, the lowest 
order Feynman diagrams in the series for an electron-positron scattering are presented: 

+ + + ... 

Connected: 

All external particles are fully connected to one another. Below is an example of a Compton scattering 

diagram which is not fully connected. 

Amputated: 

All interactions that occur with a single external particle such that the external particle is recovered 

after the interaction is amputated from the diagram. Below is an example of a Compton scattering 

Feynman diagram which can be amputated at the dotted line. 

2.5.2 QED Feynman Rules for Scattering Amplitudes 

Using the steps above to create Feynman diagrams, we can use the following rules to translate between 

the pictorial Feynman diagrams to recover the corresponding mathematical expressions that they imply. 
Below is the list of Feynman rules for QED. Asterisks (*) are included next to Feynman rules which 

hold for all interactions, QED or otherwise. 

Express scattering amplitude:* 

sum of all topologically 

iM = inequivalent, connected, 
amputated Feynman diagrams. 

Symmetry:* 

If the graph associated to a Feynman diagram has a symmetry, include 1 
s 
where s is the symmetry

factor 
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External Wave Functions: 

External Fermions = u s (p) initial 
= u s (p) final 

External Anti-Fermions = v s (p) initial 
= v s (p) final 

External Photon = ϵµ (p) initial 
= ϵ∗ 

µ (p) final 

Propagators: 

Photon Propagator (Feyn-
man gauge) 

= �igµν 

p2+iϵ 

Fermion Propagator = i 
/p+m 

p2�m2+iϵ 

Vertices: 

QED Vertex = �ieγµ 

Momentum Conservation:* 

Four momentum is conserved at each vertex. 

Integrate:* 

Integrate over each undetermined “loop” momentum: 
 

d4l 
(2π)4 . These integrals are known as Feynman 

integrals. The rest of this work is dedicated to the description of a family of one- and two-loop Feynman 

integrals, and then next we explore some of their properties. 

3 Feynman Integrals 

Under Feynman rules for quantum field theories, the most general L-loop Feynman integrals can be 

written in the form, 

I(L) ({ρ1, · · · , ρN }) = 

 
d4l1 

(2π)
4 
... 
d4lL 

(2π)
4 

1 

ρ1ρ2...ρN 

, (3.1) 

where ρi = (l ′ + k ′ )
2 
+ m2 � iϵ, with l ′ being some combination of loop momenta and k ′ being some 

combination of external momenta. Notice that Feynman integrals are by construction Lorentz invariant. 
In general, the computation of these Feynman integrals can be rather cumbersome. 

3.1 Dimensional Regularization 

Due to divergences when calculating Feynman integrals, of ultraviolet (UV) and infrared (IR) nature 

we make an analytic continuation in the dimension in which the loop momenta live. That is, instead of 
working in D = 4 dimensions we set D = 4 � 2ϵ which lets us explore the properties of these integrals 
for generic ϵ, and only at late stages of calculations we take the limit ϵ → 0. This is the dimensional 

regularization (DimReg) method. 
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In DimReg we write Feynman integrals in the form 

I 
� 
p1, ..., pE ; m 2 

1, ..., m 2 
P ; ν; D 

 
= 



 
L
 

n=1 

e γϵ d
Dkn 

iπD/2 

 
N ({ki · k j , km · pk}; D)
 P 

l=1 (m 2 
l � q 2 

l � iϵ) 
νl 

, (3.2) 

where L is the number of loops in our Feynman integral, E is the number of external momenta, P 

is the number of propagators, γ is the Euler–Mascheroni constant, ν = (ν1, · · · , νP ) is the vector of 
propagator powers, D is the dimension of the loop momenta (sometimes written as D = D0 � 2ϵ), and 

N ({ki · kj , km · pk}; D) represents a general numerator, which will be set by the details of the specific 

quantum field theory that we consider [3]. Here we define qi to be a linear combination of external and 

loop momenta of the form, 

qµi = 

L
 

j=1 

αij k
µ 
j + 

E�1
 

j=1 

βij p
µ 
j , (3.3) 

where αij and βij are the constants relating the external and loop momenta to the propagator momenta, 
which can take to values 0, -1, or 1. We also find it useful to define 

|ν|= 

P
 

l=1 

νl. (3.4) 

Throughout our work, we use the all outgoing convention for momentum and assume that m2 
l is non-

negative for all propagators. 

3.1.1 Properties of Feynman Integrals in Dimensional Regularization 

From some inherent properties of Feynman integrals and from some consequences of DimReg, we uncover 
a few useful properties of Feynman Integrals. 

Lorentz Invariant 

Feynman integrals are Lorentz invariant, meaning that if Λ is a Lorentz transformation 

I 
� 
Λp1, ..., ΛpE ; m 2 

1, ..., m 2 
p; ν; D 

 
= I 

� 
p1, ..., pE ; m 2 

1, ..., m 2 
p; ν; D 

 
. (3.5) 

Therefore, we can represent Feynman integrals as a function of a minimal (independent) set of external 
scalars, which can be built from the Lorentz invariants {pi ·pj}1≤i,j≤E and {m2

j }1≤j≤p. We denote such 

minimal set by x⃗. 

Associated Graph 

Every Feynman integral has an associated graph. These graphs are related to our Feynman Diagrams. 
This property allows us to apply tools from graph theory when computing Feynman integrals. 

Scaling Properties 

If we multiply the kinematic scales x⃗ by some λ ∈ R∗ , then 

N 
� 
λ 2{ki · k j , km · pk}; D 

 
= λ αN N ({ki · k j , km · pk}; D) , (3.6) 

where αN is the degree of the homogeneous numerator function N . Therefore, 

I 
� 
λ 2 x⃗; ν; D 

 
= λ αI I (x⃗; ν; D) , (3.7) 

where αI = αN + LD � 2|ν|. 
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Scaleless Feynman Integrals 

By applying the previous scaling property to some scaleless integral, I 
 
0⃗; ν; D 

 
, we conclude that a 

scaleless Feynman integral in DimReg fulfills: 

I 
 
0⃗; ν; D 

 
= 0 . (3.8) 

3.2 Feynman Integral Representations 

So far the presentation of Feynman integrals in this document have used a momentum representation 

(integration is performed in the loop momenta). However, there are multiple ways to express Feynman 

integrals which give different insights into their properties. Different representations can be easier to 

handle or it can give different information. Next, we compile some of useful representations for our 
study. 

3.2.1 Momentum Representation 

Let’s reinstate our definition of Feynman integrals in what is called the momentum representation. This 
is 

I (x⃗; ν; D) = 

 
 

 
L
 

j=1 

e γϵ d
Dkj 

iπD/2 

 

 
N ({ki · kj , km · pk}; D)
 P 

l=1 (m 2 
l � q2 

l � iϵ) 
νl 

. (3.9) 

We repeat the equation here for completeness. We will use this momentum representation to build the 

other representations we are interested in using. 

3.2.2 Schwinger Representation 

The first representation we are interested in is called the Schwinger representation. Here we employ 

Schwinger’s trick which is the following mathematical relation: 

1 

Aν 
= 

1 

Γ (ν) 

 ∞ 

0 

dαα ν�1 e�αA , (3.10) 

where Γ (ν) is the gamma function given by 

Γ (z) = 

 ∞ 

0 

t z�1 e�t dt . (3.11) 

Starting by taking the denominator in the momentum representation, equation (3.9), and applying 

Schwinger’s trick 

1 
� 
�q2 

j +m 2 
j 

ν j 
= 

1 

Γ (ν j) 

 ∞ 

0 

dα j α 
ν j �1 

j exp 
� 
�α j 

� 
�q2 

j +m 2 
j 

 
, (3.12) 

where we absorbed the iϵ term into the m2
j term, we can express the integral as 

I (x⃗; ν; D) = 
e Lγϵ 

 P 

j=1 Γ (ν j) 

 

αj ≥0 

d P α

 

 
P
 

j=1 

α 
νj �1 

j 

 

 



 L
 

r=1 

dDkr 

iπD/2 

 

exp 

 

 
P
 

j=1 

α j 

� 
�q2 

j +m 2 
j 

 

 

 . (3.13) 

We now simplify by defining new variables. Taking the exponential term and expanding, 

p
 

j=1 

αj 

� 
�q2 

j +m 2 
j 

 
= � 

L


r=1 

L
 

s=1 

krMrsks + 

L
 

r=1 

2kν · ν̄r + J , (3.14) 
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where Mrs is an L × L matrix with scalar entries, ν̄r is a vector with L entries, each one a 4-vector, 
and J contains scalar terms. We now define 

U = det (M ) , (3.15) 

F = det (M) 
� 
J + ν̄ T M�1 ν 

 
, (3.16) 

where U and F are called the “graph” polynomials, or the first and second Symanzik polynomials, 
respectively. We will now show why we have made these definitions. Consider some generic integral T , 
of the form 

T = 

 

dy1...dym exp 
� 
�y⃗ T Ay⃗ + 2w⃗ T y⃗ + c 

 
, (3.17) 

where A is an m×m symmetric positive-definite matrix, ⃗ w is an m vector, and c is an arbitrary constant. 
By making the change of variable y⃗ = v⃗ + A�1 ⃗ w, 

T = 

 

dv1...dvm exp 
� 
�v⃗ T Av⃗ 

 
exp 

� 
w⃗ T A�1 w⃗ + c 

 

= πm/2 (det (A))
�1/2 

exp 
� 
w⃗ T A�1 w⃗ + c 

 
. 

(3.18) 

Using this in our loop-momenta integral, we arrive at the Schwinger representation: 

I (x⃗; ν; D) = 
e Lγϵ 

 P 

j=1 Γ (νj) 

 

αj ≥0 

d P α

 

 
P
 

j=1 

α 
νj �1 

j 

 

 U� D 
2 (α) exp 

 �F (α; ⃗x) 

U (α) 

 

. (3.19) 

This is a P -fold integral as opposed to the (D × L)-fold integral we had in the momentum representation. 
Recall that P is the number of propagators in the integral. 

3.2.3 Feynman Representation 

Building off of the Schwinger representation we can construct another useful Feynman integral repre-
sentation. From 

P 

j=1 αj ≥ 0, we can write the identity 

1 = 

 ∞ 

�∞ 

dtδ 

 

t � 

P
 

j=1 

αj 

 

 = 

 ∞ 

0 

dtδ 

 

t � 

P
 

j=1 

αj 

 

 . (3.20) 

So we can then re-express integrals of functions over dP α as 

 

αj ≥0 

d P αf (α1, ...α p) = 

 

αj ≥0 

d P α 

 ∞ 

0 

dtδ 

 

t � 

P
 

j=1 

α j 

 

 f (α1, ...α p) . (3.21) 

Then, by making the change of variables 
αj 

t = aj , 

 

α j ≥0 

d P αf (α1, ...α p) = 

 

aj ≥0 

d P aδ 

 

1 � 

P
 

j=1 

aj 

 

 

 ∞ 

0 

dtt P �1 f (ta1, ...ta p) . (3.22) 

Applying this identity to the Schwinger representation we get 

I (x⃗; ν; D) = 
e Lγϵ 

 P 

j=1 Γ (ν j) 

 

aj ≥0 

d P a

 

 
P
 

j=1 

a 
νj �1 

j 

 

 δ 

 

1 � 

P
 

j=1 

aj 

 

 

 ∞ 

0 

dtt|v|+ LD 
2 �1 U� D 

2 (α) exp 

 �F (α; ⃗x) 

U (α) 

 

. 

(3.23) 
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By making a change of variables t ′ = FU 

I (x⃗; ν; D) = 
e LγϵΓ 

� 
|ν|� LD 

2 



 P 

j=1 Γ (νj) 

 

aj ≥0 

d P aδ 

 

1 � 
 

j∈s 

aj 



 

 

 
P
 

j=1 

a 
νj �1 

j 

 

 

[U (a)]�|ν|� 
(L+1)D 

2 

[F (α; ⃗x)]|ν|� LD 
2 

 ∞ 

0 

dt ′ (t ′ ) 
v� LD 

2 
�1 
e�t ′ 

. 

(3.24) 

Then by noticing that the last integral is just Γ 
� 
ν � LD 

2 

 
, we obtain 

I (x⃗; ν; D) = 
e LγϵΓ 

� 
|ν|� LD 

2 



 P 

j=1 Γ (νj) 

 

aj ≥0 

d P aδ 

 

1 � 
 

j∈s 

aj 



 

 

 
P
 

j=1 

a 
ν j �1 

j 

 

 
[U (a)]�|ν|� 

(L+1)D 

2 

[F (a; ⃗x)]|ν|� LD 
2 

. (3.25) 

This is the Feynman representation of the Feynman integral. The parameters aj are called the Feynman 

parameters. One of the advantages of this representation is that it makes clear that singularities in the 

Feynman integral are related to the zeroes of the second Symanzik polynomial F (a; ⃗x). 

3.2.4 Lee-Pomeransky Representation: 

For the sake of completion, we present the Lee-Pomeransky Representation of the Feynman integral 
without derivation. 

I (x⃗; ν; D) = 
e LγϵΓ 

� 
D 
2

 

Γ 
 

(L+1)D 

2 
� |ν| 

 
 P 

j=1 Γ (ν j) 

 

uj ≥0 

d P u

 

 
P
 

j=1 

u 
νj �1 

j 

 

 [G (u)]�D/2 , (3.26) 

where 

G (α) = U (α) + F (α; ⃗x) . (3.27) 

This representation is represented by one polynomial G as opposed to two for the Feynman repre-
sentation. For a more in depth discussion see [18]. 

3.2.5 Baikov Representation: 

Baikov representation is introduced when a specific requirement is met. Defining 

e = dim ⟨p1, p2, ..., pE⟩ . (3.28) 

Where pi are external momenta. Whenever E ≤ 5 we get e = E � 1, and other wise e = 4. 
Let σ be a set of dot products of loop momenta and external momenta, 

σ = {�k 2 
i |1 ≤ i ≤ L} ∪ {�ki · kj |1 ≤ i < j ≤ L} ∪ {�ki · pj |1 ≤ i ≤ L, 1 ≤ i ≤ e}. (3.29) 

The number of terms in σ, i.e. the number of independent scalar products, is then expressed by, 

Nν = 
1 

2 
L (L + 1) + eL . (3.30) 

So, we say that a Feynman integral has a Baikov representation if 

Nν = P , (3.31) 

where P is the number of propagators. 
For diagrams which satisfy these conditions conditions we can transform inverse propagators into 

dot products included in the set σ. Defining 

zi = �q2 
i +m 2 

i , (3.32) 
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we can then find fi functions, independent of loop momentum, such that 

zi = cij σ j + fi , ∀ i = 1, ..., P , (3.33) 

with the matrix cij invertible by construction. Therefore we can express σj as follows, 

σ j = 
� 
c�1 
 

ji 
(zi + fi) . (3.34) 

This allows us to make a change of variables between in the momentum representation integral, from the 

kj with j = 1, ..., L, to the zi. By employing this change of variables we obtain the Baikov representation, 

I (x⃗; ν; D) = 
e Lγϵ[det (G (p1...pe))]

�(D+e+1)/2 

π 
1
2 (Nν �L) (det (C))  P 

j=1 Γ 
 

D�e+1+j 

2 

 

 

C 

d Nν z 
[B (z) 

D�l�e�1 
2 ]

 Nν 

s=1 z
�νs 
s 

, (3.35) 

where C is some non-trivial contour, G (q1, ..., q m)i,j = �qi · qj , and B(z) = B (z1, · · · , zNν 
) = 

det[G (k1, ..., kL, p1, ..., pe)], known as the Baikov polynomial. The Baikov representation naturally 

let’s us take the “cut” of a Feynman integral, that is the residue when the inverse propagators �q2 
i +m

2 
i

go “on-shell”,that is, when they go to zero. This operation is essential for modern techniques to com-
pute Feynman integrals, for example when building their corresponding differential equations, or in the 

so-called numerical unitary method which we outline in section 5. 

Irreducible Scalar Products 

Recall how we mentioned that in order to express a Feynman integral in the Baikov Representation we 

require that Nν = P , however, even if Nν > P we can still “complete” the corresponding propagator 
structure by introducing propagators not originally present. Those extra propagators are related to 

scalar products involving loop momentum which are not connected to existing propagators. We call 
those scalar products irreducible scalar products (ISPs). To make this more concrete we explore a 

two-loop example. 

Pentabox Example 

The so-called pentabox two-loop Feynman integral provides a clear example of building a complete 

Feynman integral from ISPs. This integral is specified by the following graph. 

Counting the propagators, we see that P = 8. However, looking at the dot products involving loop 

momentum, Nν = 11, 

σ = {�k 2 
1, �k 2 

2, �k1 · k2, �k1 · p2, �k1 · p3, �k1 · p4, �k1 · p5, �k2 · p2, �k2 · p3, �k2 · p4, �k2 · p5} 

seven of these are easily able to be related to propagators in the diagram, leaving four scalar products 
of interest, 

{�k1 · p3, �k1 · p4, �k1 · p5, �k2 · p2}. 
Note that one of these scalar products are able to be reduced to expressions of other scalar products, 

k1 · (p3 + p4 + p5) = �k1 · (p1 + p2) 

⇒ k1 · p3 = �k1 · (p1 + p2 + p4 + p5) 
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Thus we can reduce �k1 · p3 using the propagator between p1 and p2, �k1 · p4, and �k1 · p5. In order to 

keep �k1 · p3 we must take �k1 · p4 and �k1 · p5 to be irreducible. We cannot reproduce this reduction 

with �k2 · p2 because there is not a propagator allowing this procedure already in our diagram. Thus 
we have three irreducible scalar products for the pentabox, 

{�k1 · p4, �k1 · p5, �k2 · p2}. 

Now, we “enlarge” our Feynman diagram by introducing propagators corresponding to these ISPs, 

ρ9 = (�k1 + p4)
2 
, 

ρ10 = (�k1 + p5)
2 
, 

ρ11 = (�k2 + p2)
2 
. 

This allows us to write our Feynman integral for this diagram in the following manner, 

I (x⃗; ν; D) = 

 
 

 
L
 

j=1 

e γϵ d
D kj 

iπD/2 

 

 
1 



 P 

l=1 (m 2 
l � q2 

l � iϵ) 
νl 

 
ρ ν9 

9 ρ ν10 

10 ρ ν11 

11 

, 

which we have shown in the momentum representation to make the propagators explicit. We can recover 
our original integral family1 by setting ν9 = ν10 = ν11 = 0. However, with this complete family for 
the pentabox we can represent the pentabox Feynman integral in the Baikov representation. Thus we 

can take cuts for the pentabox (where all but the ISP propagator go to zero). This procedure is very 

important for our study our main integral of interest, the double box. 

3.3 Integration By Parts Relations 

For a generic Feynman integral I (x⃗; ν; D), in dimensional regularization if |ν|= ΣP
j=1νj ≤ 0 then I = 0. 

For a fixed x⃗, there are relationships between I (x⃗; ν; D), such that there are only a finite number of 
linearly independent Feynman integrals. The minimum linearly independent set of Feynman integrals 
are called the master integrals. 

In dimensional regularization 

 
dDkj
� 
iπD/2 

 
∂ 

∂kµ 
j 

(νµFI (k1, ..., kL; p1, ..., pP ; ν; D)) = 0 , (3.36) 

where νµ is a generic D-dimensional vector and FI (k1, ..., kL; p1, ..., pP ; ν; D) is the integrand of a 

Feynman integral, that is 

FI (k1, ..., kL; p1, ..., pP ; ν; D) = 
N ({ki · k j , ki · pj}; D)
 P 

j=1 (m 2 
l � q2 

l ) 
ν j 

. 

Using this, we consider ∂ 
∂kµ 

i 

acting on 1

(m2 
j 
�q2 

j )
νj . For example, if qj = ki + p1, where p1 is an external 

momentum, consider 

∂ 

∂kµ 
i 

 
νµ 

� 
m 2 

j � q2 
j 

νj 

 

, (3.37) 

where νµ is independent of kµ 
i . Therefore, 

∂ 

∂kµ 
i 

 
νµ 

� 
m 2 

j � q2 
j 

νj 

 

=
νµ 

� 
m 2 

j � q2 
j 

νj +1 
νj2 (kiµ + p1µ) . (3.38) 

1We define an integral family as the set of all Feynman integrals which share a common propagator structure. 
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Choosing νµ = pµ 
1 , 

∂ 

∂kµ 
i 

 
νµ 

� 
m 2 

j � q2 
j 

νj 

 

=
2νj 

� 
m 2 

j � q2 
j 

νj +1 
p1 (ki + p1) 

= 
ν j 

 
(ki + p1)

2 � k2 
i + p2 

1 

 

� 
m 2 

j � q2 
j 

νj +1 
. 

(3.39) 

Say q2 
1 = k2 

i , 

∂ 

∂kµ 
i 

 
νµ 

� 
m 2 

j � q2 
j 

νj 

 

= 
νj{ 
� 
m 2 

1 � q2 
1 

 
� 
� 
m 2 

j � q2 
j 

 
+ 
� 
p2 
1 �m 2 

1 +m 2 
j 

 
} 

� 
m 2 

j � q2 
j 

 νj +1 
. (3.40) 

Expanding this term and simplifying, we can then use equation (3.36) to conclude that 

 
dDkj
� 
iπD/2 

vj 

 

� 1 
� 
m 2 

j � q2 
j 

νj 
+ 

1 

(m 2 
1 � q2 

1) 
�1 � 

m 2 
j � q2 

j 

ν j +1 
+
p2 
1 �m 2 

1 +m 2 
j 

� 
m 2 

j � q2 
j 

ν j +1 

 

= 0 . (3.41) 

This specific example shows that the total derivative acting on an integrand provides us with rela-
tionships between integrals in the same family. This helps us reduce the number of integrals that we 

actually have to calculate when a family of Feynman integrals contains a large number of integrals. 
Formally, every complete family of Feynman Integrals satisfies linear recursion relations in the 

propagator exponents ν ∈ ZP , which are called integration-by-parts (IBP) identities. The coefficients 
of the linear combinations are rational functions in the external scales x⃗ and in the dimensional regulator 
ϵ (D). The number of master integrals is finite for every family of Feynman integrals [16] [6]. 

3.3.1 IBP Example: One-Loop bubble 

To help understand IBP relations, here we cover the example of a one-loop bubble, which has the 

Integral 

I 
� 
p 2;m 2 

1; m 2 
2; ν1, ν2, D 

 
= e γϵ 

 
dD k 

iπD/2 

1 

(m 2 
1 � k2) 

ν1 

 
m 2 

2 � (k � p)
2 
ν2 

. (3.42) 

More specifically, we will look at the special case where m2 
1 = m2 

2 = 0. In this case if ν1 ≤ 0 or ν2 ≤ 0, 
then I (v1, v2) = 0. So to find IBP relations we take 

 
dDk 

� 
iπD/2 

 
∂ 

∂kµ 

 

νµ 1 

(�q2 
1) 

ν1 (�q2 
2) 

ν2 

 

= 0 , (3.43) 

where �q2 
1 = �k2 and �q2 

2 = � (k � p)
2 
. If set νµ = kµ , we get the first IBP relationship 

(D � 2ν1 � ν2) I (ν1, ν2) � ν2I (ν1 � 1, ν2 + 1) � v2p 2 I (ν1, ν2 + 1) = 0 . (3.44) 

As we would prefer to set ν1 and ν2 ≤ 0, we redefine (ν2 + 1) → ν2 (restricting us to using this IBP 

relationship only for v2 ̸= 1) so that we can rewrite equation (3.44) into 

I (v1, v2) = 
D + 1 � 2ν1 � ν2 

p2 (ν2 � 1) 
I (ν1, ν2 � 1) � 

1 

p2 
I (ν1 � 1, ν2) . (3.45) 

We can get a second IBP relation by setting νµ = pµ , this gives 

(ν1 � ν2) I (ν1, ν2) � ν1I (ν1 + 1, ν2 � 1) � ν1p 2 I (ν1 + 1, ν2) 

+ ν2I (ν1 � 1, ν2 + 1) + ν2p 2 I (ν1, ν2 + 1) = 0 . 
(3.46) 
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Using the first IBP relationship, equation (3.44), we see that we can simplify the last two terms. Addi-
tionally, we can see that we should redefine (ν1 + 1) → ν1 (restricting us to using this IBP relationship 

only for v1 ̸= 1). This gives the simplified form of the second IBP relation 

I (ν1, ν2) = 
D + 1 � 2ν2 � ν1 

p2 (ν1 � 1) 
I (ν1 � 1, ν2) � 

1 

p2 
I (ν1, ν2 � 1) . (3.47) 

With these two IBP relationships, we find that the complete family I (ν1, ν2) has a single master integral, 
which we can choose to be I (1, 1). This integral can be computed and gives: 

I (1, 1) = e γϵ 
� 
�p 2 


D�4 

2 
Γ 
� 
2� D 

2 

 
Γ 
� 
D 
2 
� 1 
2 

Γ (D � 2) 
. (3.48) 

This means that all we have to do to solve for any I (ν1, ν2) is use the two IBP relationships, equation 

(3.45) and (3.46), to solve for the rational coefficient of then master integral I (1, 1), drastically reducing 

the complexity of the problem. 
As demonstrated, IBP relations are a powerful tool for calculating Feynman integrals, especially 

those of greater complexities. This is one of the main techniques we use in this research, and it is vital 
for calculating the Feynman diagrams that we will study. 

4 Einstein Hilbert Gravity 

For Gravitational wave astronomy, we are interested in the potential between bound binary systems, 
such as binary black holes. To solve for this we can use the techniques we learned from QFT and 

apply them to an effective field theory of weak gravity on scalar particles. Similar to how we modeled 

interactions between the photon, the carrier of the electromagnetic force, and charged fermions, we can 

model the interactions between a hypothetical gravitational force carrier, the graviton, and a scalar 
particle, such as a black hole. Even though these bound systems do not scatter, the potential between 

an open scattering system and a bound system are related, so we can consider scattering black holes to 

calculate their bound potential. 
To do this we need a Lagrangian for gravity, called the Einstein-Hilbert Lagrangian.: 

LEH = � 
2

κ2 

 
|g|R , (4.1) 

or for a scalar field theory interacting through gravity 

L = 
√ �g 

 

� 
2R 

κ2 
+ 

1 

2 
g µν ∂ µϕ∂ν ϕ � 

1 

2 
m2 ϕ 2 + ... 

 

, (4.2) 

where κ = 
√ 
32πG, G is Newton’s constant, gµν is the metric tensor, g = det (gµν ), and R is the 

Ricci scalar associated to the curvature of spacetime (see e.g. [11]). In the weak field approximation 

gµν = ηµν + κhµν , where hµν is the graviton field [11]. Here we do not consider any other interactions, 
for example those of electromagnetic nature. 

4.1 Feynman Rules for Einstein-Hilbert Gravity 

In a similar manner to how we derived the Feynman rules for QED, we can derive Feynman rules from 

the Lagrangian for our theory of gravity. This process is fully explained in EPFL Lectures on General 

Relativity as a Quantum Field Theory by John F. Donoghue, Mikhail M. Ivanov, and Andrey Shkerin 

[9]; however, here we just quote the main results. 

Propagators: 

Graviton Propagator = iP αβγδ 

q2 , 

where P αβγδ = 1 
2 
[ηαγηβδ + ηαδηβγ � ηαβηγδ]. 
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Vertices: 

Graviton Vertex = i κ 
2 

� 
pµp

′ 
ν + p′ µpν 

 
� ηµν 

� 
p · p ′ �m 2 

 
. 

where pµ and p ′ν are the four momentum of the massive scalar particle. There is an additional three 

graviton vertex; however, we do not include it in this document for brevity. 
Using these Feynman rules we can analyze binary black hole scattering. 

4.2 Tree Level Graviton Scattering 

Following the derivation in Donoghue [9], for the lowest order (“tree-level”) interaction, we have the 

Feynman diagram 

= iM = 
iκ 

2 

 
(pµ 

1p ν 
2 + p 

µ 
2p ν 

1) � ηµν 
� 
p1 · p2 �m 2 

 

× 
i 

q2 
Pµναβ 

iκ 

2 

 
pα 
3 p 

β 
4 + p α 

4 p 
β 
3 

 
� η αβ 

� 
p3 · p4 � m 2 



 
. 

(4.3) 

In the non-relativistic static limit pµ 
i ≈ 

 
mi, ⃗0 

 
, so 

M = � 
κ2 

2 

m2
1 m 22 

q2 
= �16πG 

m2
1 m 22 

q2 
. (4.4) 

The Fourier–transform of M from momentum space to real space gives us the interaction potential. 
For this example, 

V (r) = � 
Gm1m2 

r 
, (4.5) 

which is what we would have expected, that is we obtain Newton’s potential (see a more detailed dis-
cussion in [9]). As we calculate higher-order corrections to the scattering amplitude M (by evaluating 

higher-loop Feynman diagrams), we can calculate relativistic corrections (either in velocity or in New-
ton’s constant G) to this potential. This allows to calculate the most accurate gravitational potentials 
to date, surpassing results obtained by standard general relativity methods (for a recent review on this 
progress, see [7]). 

5 Numerical Unitary Method and Integrand Parameterization 

In this section we outline a method to obtain numerical results for the amplitude integrand of general 
scattering processes. First we explore the so-called cut-equation which provides a method to break 
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apart the integrands of Feynman diagrams into a basis of functions, such that we only have to calculate 

a few integrand coefficients to obtain the amplitude. The rest of the integrands evaluate to zero, we 

call them surface terms, therefore dropping from the amplitude. We will introduce the helpful adaptive 

loop parametrization which provides a representation of loop momenta that can be employed to express 
the integrand for scattering amplitudes. Then, we outline how this adaptive parametrization is used to 

construct three integrad bases, which each build on the last to produce more surface terms, progressively 

simplifying the procedure to compute amplitudes. Obtaining these bases and the coefficients relating 

the terms in our basis to the amplitude integrand, is the key goal of this research. 

5.1 Cut-Equation 

We start with the Ansatz that the scattering amplitude can be written as a linear combination of master 
integrals, 

A = 


Γ∈∆ 

 

i∈MΓ 

cΓ,i IΓ,i (5.1) 

Where MΓ denotes the set of master integrals, ∆ denotes all possible propagator structures of the 

amplitude, Γ (which we call the diagram) is a specific propagator structure {ρ1, ..., ρp} ∈ ∆ with 

ρj = m2
j � q2 

j � iϵ, and with qj corresponding to the momentum of the propagator ρj . The coefficients 
cΓ,i are function of pi ·pj and D. From equation (5.1) we obtain that for generic integrands of scattering 

amplitudes, 

A(ℓl) = 


Γ∈∆ 

 

i∈QΓ 

cΓ,imΓ,i(ℓ
Γ 
l )

 
j∈PΓ 

ρj (ℓΓ 
l ) 

(5.2) 

where ℓl represent the loop momenta, QΓ is the set containing all master (MΓ) and surface (SΓ) 
functions, and {mΓ,i} is a set of functions which depend on external momenta, loop momenta, and 

the dimension of spacetime [2]. It is important to note that {mΓ,i} is dependent on the propagator 
structure, but that the propagators are explicitly removed from them. 

In the end, we will need to extract the coefficients cΓ,i. To accomplish this we put our loop-momenta 

on-shell, that is we choose loop-momenta ℓΓ 
l such that ρj(ℓ

Γ
l ) = 0 for all propagators in Γ. In this limit 

we take only the most singular contribution to the amplitude’s integrand (see e.g. [15]). To accomplish 

this, we take the ansatz (5.2) for some Γ ∈ ∆ and multiply both sides of the equation by the product 
of the ρj(ℓl) in Γ, then take the limit as all ρj (ℓl) approach zero (that is, when ℓl → ℓΓl ), 

lim 
ρi→0 

 

A(ℓl) 
 

i∈Γ 

ρi 

 

= lim 
ρi→0 

 

 
 

Γ ′ ∈∆ 

 

i∈QΓ ′ 

cΓ ′ ,imΓ ′ ,i(ℓ
Γ ′ 

l )
 

j∈P Γ ′ 
ρ j(ℓΓ ′ 

l ) 

 

i∈Γ 

ρi 

 

 . (5.3) 

In this limit, we notice that for a generic diagram Γ ′ with less propagators than Γ, the corresponding 

integrand will go to zero. On the other hand, Γ ′ with more propagators than Γ will be non-zero. This 
implies that there is an ordering, or hierarchy, of diagrams in ∆. Some propagator structures have 

more propagators (the parents) than others (the daughters). The hierarchy of diagrams for the gravity 

two-loop amplitude which we are studying is shown in Figure 2. 
Note that in the on-shell limit, only the corresponding most-singular contributions survive. Notably, 

the amplitude’s integrand factorizes into a product of tree-level amplitudes. Thus, we are left with the 

following equation, 
 

states 

 

i∈TΓ 

Atree 
i (ℓ Γ 

l ) = 
 

Γ ′ ≥Γ 
k∈QΓ ′ 

cΓ ′ ,kmΓ ′ ,k(ℓ
Γ 
l )

 
j∈(P Γ ′ /PΓ) ρj (ℓΓ 

l ) 
, (5.4) 

which is known as the cut-equation. Here Atree 
i is the tree level amplitude of each vertex in the diagram 

Γ and TΓ correspond to all the vertices in it [8, 15]. As the coefficients cΓ ′ ,k are only depend on the 

external variables, sampling the cut equation over multiple values of on-shell loop-momenta ℓΓ 
l produces 

systems of linear equations. These linear equations can be solved numerically, and from their solutions 
we obtain the coefficients! To compute the products of tree-level amplitudes, which are commonly called 

the cuts, we employ the software package called Caravel. 
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Figure 2: Hierarchy of diagrams for the gravity two-loop amplitude studied in [11]. The blue and red 

lines represent separate massive particles and the black lines represent massless graviton exchanges. In 

this work we focus on the diagram that appears second to the left in the top row, the double box. 

The Caravel Framework 

Caravel [1] is a program that, among other things, produces numerical evaluations for cuts, that are 

products of tree-level amplitudes. Caravel accomplishes this over different numerical values of the 

on-shell loop momenta, essentially using efficient techniques to handle the Feynman rules for the theory 

presented in section 4. Caravel performs numerical calculations using finite field arithmetic to allow 

for exact calculations. For more details on this program see the release article [1]. With these numerical 
evaluations in hand, once we obtain a set of basis functions to represent the integrand, we can obtain 

the corresponding integrand coefficients. We can obtain these set of basis functions using the so-called 

adaptive loop-momentum parametrizations, as described in the follwowing subsection. 

5.2 Adaptive Loop-Momentum Parametrizations 

We start working by example. We first consider one-loop diagrams, and use the so-called van Neerven-
Vermaseren basis. The extension of it to multi-loop diagrams is what we will call as the adapative 

loop-momentum parametrization. We follow closely the presentations of [10] (at one-loop level) and 

of [15] (for multi-loop level). 
The loop momentum of a one-loop Feynman integral can be expressed as a linear combination of 

the following set of vectors: 

1. 4-vectors which lie in the space spanned by the external momenta of the diagram, and which have 

dimension Dp . We call this the scattering plane of the diagram. 

2. 4-vectors (living within the 4-dimensional Minkowski space) which are transverse to the scattering 

plane, and which have dimension Dt . Naturally, 4 = Dp + Dt . 

3. vectors which cover extra-dimensional degrees of freedom, as needed in dimensional regularization. 
We denote the dimensionality of this space as Dϵ . 

We will treat each in turn. 
First, for the vectors which lie in the scattering plane, we choose a basis vi (i = 1, · · · , Dp � 1) which 

satisfy, 
vi · pj = δij , (5.5) 

where the pj ’s are the external momenta to the one-loop diagram. It is easy to construct such vi’s by 

using the Gram matrix 

Gij = pi · pj with i, j = 1, · · · , Dp � 1 . (5.6) 
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Indeed, we define 

vµ 
i = (G�1)ijp

µ 
j . (5.7) 

Now with a set of basis vectors which span the same physical space as our external momenta, we 

can now consider the set of basis vectors which are transverse to our loop momenta. In our scattering 

process of interest we have four external momenta, of which only three are linearly independent due to 

momentum conservation (that is, for us Dp = 3). Therefore, we need another vector (Dt = 1) which is 
transverse to our external momenta such that we have the required vectors to span the full 4-dimensional 
Minkowski space. By construction this transverse vector n1 obeys the following conditions: 

n1 · pj = 0, 

n1 · vj = 0, 

n1 · n1 = 1. 

(5.8) 

We see that for our problem these conditions are satisfied when we define 

ñµ 
1 = ϵµνρσ p1ν p2ρp3σ, 

nµ1 = 
ñµ 
1 

|ñ1|2 
. 

(5.9) 

Lastly, we must consider the extra dimensional degrees of freedom from dimensional regularization. 
For this we want a set of extra-dimensional vectors which are orthogonal to our previous vectors, which 

is easily done by setting all of the 4-dimensional components to 0, and orthogonal to one another, which 

if we start with random linearly-independent extra-dimensional vectors, can be accomplished using the 

Gram–Schmidt procedure. The extra-dimensional vectors nϵ 
i obey the relations: 

n ϵ 
i · pj = 0 , 

n ϵ 
i · vj = 0 , 

n ϵ 
i · nj = 0 , 

n ϵ 
i · n ϵ 

j = δ ij . 

(5.10) 

With these definitions laid out, we write the loop momentum as 

ℓ = 

Dp

 

j=1 

vjrj + 

D t
 

i=1 

niαct,i + 

D ϵ
 

i=1 

n ϵ 
i µi . (5.11) 

This is known as the van Neerven-Vermaseren loop-momentum parametrization. Notice that for com-
pleteness we have included a sum for the transverse vectors ni, even though before we worked in an 

example where there was a single vector n1. We can obtain the coefficients of this parametrization using 

the properties from equations (5.5), (5.8), and (5.10). Doing so we obtain: 

rj = pj · ℓ , 
αct,i = ni · ℓ , (5.12) 

µi = n ϵ 
i · ℓ . 

For multi-loop diagrams we extend this parametrization by noting that the loop momentum may 

not necessarily encounter all the external momenta in its routing withing the diagram. This happens 
explicitly for example in the double box which we study. When discussing the van Neerven-Vermaseren 

loop momentum parametrization we ended up denoting the transverse space variables αct,i with the 

letters ct. This is because, in the case of multi-loop diagrams there are vectors which are transverse for 
only a specific loop momentum but not for all loop momenta in the diagram. For a loop momentum 

in a multi-loop diagram, our vectors vj 
l , corresponding to the unencountered external momenta, act as 

a transverse vector for the external momenta specific to such loop momentum. The transverse vector 
that we defined for the one-loop case on the other hand remains common to all external momenta in 

the diagram. This then is the adaptive loop parametrization. 
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To write the loop momenta parametrization we introduce the following set of indices: Bp 
l the 

scattering plane for the loop momentum ℓl (associated to the basis vectors vil); B
t 
l the complement 

momenta within the scattering plane which is transverse to Bp 
l (associated to the basis vectors vj 

l ); 
Bct for the common-transverse space (associated to the basis vectors ni); and finally Bϵ for the extra-
dimensional space (associated to the basis vectors ni

ϵ). With this, we then write: 

ℓl = 
 

i∈Bp 

l 

vi l r
lj + 

 

j∈Bt 
l 

v 
j 
l α

lj 
t + 

 

i∈Bct 

ni α li ct + 
 

i∈Bϵ 

n i ϵµ
i 
l . (5.13) 

with αlj 
t being the coefficient corresponding to the transverse vector for that loop momenta and to the 

irreducible scalar products (ISPs) discussed in section 3.2.5. We can use this parametrization to obtain 

the desired set of integrand functions, {mΓ,i} (see equation (5.2)). In the following sections we will 
explore three different bases of functions {mΓ,i}. 

5.3 Tensor Basis 

We start building a basis {mΓ,i} which is completely independent of the inverse propagators in Γ. We 

note that we can express both rlj and µi
l in terms of propagators. For rlj we note that pj · ℓl can be 

found in the cross term of the propagators as each propagator term is expressed as the square of a 

linear combination of external momentum pj and ℓl. Thus, r
lj can always be re-written in terms of 

propagator variables, 

rlj = � 
1 

2 

 
ρli � (qli)

2 � ρl(i�1) + 
� 
ql(i�1) 

2 
 
, (5.14) 

where qli are combinations of external momenta. With this, we note that a N ({ki · kj ; ki · pm}; D) 

for a diagram Γ can be expressed in terms of µi
l, α

lj 
t , and αli 

ct. Everything else will contain inverse 

propagators ρli which will cancel with the propagators in the ansatz (5.2). Such terms can be caught 
by the numerators of daughter diagrams Γ ′ < Γ. 

Considering the propagator which our loop momentum lie on, say ρl1, we can express the extra-
dimensional variable µi

l in the following manner, 

ρl1 = ℓ 2 
l = f 

 
rlj , αlj 

t , α li ct 

 
+ 
� 
µi 
l 

2 

⇒ 
� 
µi 
l 

2 
= ρl1 � f 

 
rlj , αlj 

t , α li ct 

 
. 

With these two expressions, since αlj 
t and αli 

ct are the only variables independent of propagators, we 

can express a generic integrand numerator in terms of monomials built from αlj 
t and αli 

ct 
2 . Therefore, 

we can represent the numerators of our integrand to be linear combinations of numerators of the form, 

(αlj 
t )

a⃗(α li ct) 
b⃗ , (5.15) 

where the exponents are vectors of integers. The collection of these monomials form what we call the 

tensor basis. 

5.4 Scattering-Plane Tensor Basis 

Now that we have laid out the form of our tensor basis, we now wish to make a change of basis in a 

way that we can group basis functions into two sets, MΓ and SΓ, such that: 


 
dα(...)

mΓ,i({ki ·kj ;ki·pm};D) 

ρ1...ρ p 
= IΓ,i i ∈ MΓ ,

 
dα(...)

mΓ,i({ki ·k j ;ki·pm};D) 

ρ1...ρp 
= 0 i ∈ SΓ . 

(5.16) 

Here the IΓ,i are master integrals. Such a choice would be convenient as the map from the integrand 

A(ℓl) to the actual (integrated) amplitude A gets simplified. 

2Monomials because in field theory all numerators are polynomial functions of scalar products. 
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To accomplish this, we first note that monomials with odd powers of (αli
ct) integrate to zero because 

the interval of integration (basically from minus infinity to infinity) is symmetric, i.e. 

 

dα(...)
(αli 

ct)
(2n�1) 

ρ1...ρN 

= 0 , n = 1, 2, 3, · · · . (5.17) 

Here we ignore other integrals needed for full integration for visual clarity. 
We can also transform monomials with even powers of (αli

ct) to integrate to zero. We will demonstrate 

this for monomials with (αli
ct)

2 and (αli 
ct )

4 , the only two which will be relevant for the calculations 
performed in this study. For notational simplicity we will simply write αct in the following, and drop 

other indices and terms that might appear in the integrals. 
For the case of (αct)

2 we start by using the definition of (αct) to express our integrand in terms 
of loop tensor integrals. Once we do this we can use the fact that the result of such integral must be 

dependent on external loop momentum and metric tensors to write a generic result. This is: 
 

dα(...) 
α2 
ct 

ρ1...ρN 

= nµnν 

 

dα(...) 
ℓµℓν 

ρ1...ρN 

, 

 

dα(...) 
ℓµℓν 

ρ1...ρN 

= Agµν + Bqµq ν . 

From this we can use our definitions our definitions of (αct), together with the object µ2 = g
[D�4]
µν ℓµℓν , 

to find expressions which are both proportional to the coefficient A in the last equation, 
 




 



 


nµnν 

 

dα(...) 
ℓµℓν 

ρ1...ρN 

= 

 

dα(...) 
α2 
ct 

ρ1...ρN 

= A , 

g[D�4] 
µν 

 

dα(...) 
ℓµℓν 

ρ1...ρN 

= 

 

dα(...) 
µ2 

ρ1...ρN 

= (D � 4)A . 

We have used g
[D�4] 
µν as the metric tensor in D dimensions subtracted by the metric tensor in 4 dimen-

sions. Using these last two relations, we obtain, 

 

dα(...) 
α2 
ct � µ2 

(D�4) 

ρ1...ρN 

= 0 . 

Thus if we transform accordingly all monomials in the tensor basis that contain a square of a common-
transverse variable, we can move these functions to our set of surface terms, SΓ. 

Similarly, considering the case of (αct)
4 , 

 

dα(...) 
α4 
ct 

ρ1...ρN 

= nµnν nσnγ 

 

dα(...) 
ℓµℓν ℓσℓγ 

ρ1...ρN 

, 

 

dα(...) 
ℓµℓν ℓσℓγ 

ρ1...ρN 

= Cg(µν g σγ) + Dq(µqν g σγ) + Eqµqν qσ q γ , 

where the parenthesis around the tensor indices mean that we symmetrize over all of those indices. 
From this, we continue the derivation in an analogous manner: 
 




 



 


nµnν nσnγ 

 

dα(...) 
ℓµℓν ℓσℓγ 

ρ1...ρN 

= 

 

dα(...) 
α4 
ct 

ρ1...ρN 

= C , 

g[D�4] 
µν g[D�4] 

σγ 

 

dα(...) 
ℓµℓν ℓσℓγ 

ρ1...ρN 

= 

 

dα(...) 
µ4 

ρ1...ρN 

= 
 
(D � 4) 2 + 2(D � 4) 

 
C = (D � 4)(D � 2)C . 

⇒ 

 

dα(...) 
α4 
ct � µ4 

(D�4)(D�2) 

ρ1...ρN 

= 0 . 

With these two transformations we can then reorganize the tensor basis functions into a new inte-
grand basis, which we call the scattering-plane tensor basis, which include all monomials with only ISP 

variables and all surface terms constructed from the monomials with common transverse variables. 
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5.5 Master-Surface Basis 

The scattering-plane tensor basis introduced in the previous subsection achieves part of our goal to 

parametrize integrands in terms of master and surface terms (as in (5.16)). But in general it still leave 

a lot of integrals (of ISP monomials) which are reducible according to IBP relations (see section 3.3.1). 

That is, with the scattering-plane tensor basis we are left with monomials, (αlj
t )

a⃗ which we will need 

to integrate. We use IBP relations to reduce as many of them as needed to master integrals. 
Suppose we have an IBP relation, 

Ii = 
 

j 

cijI 
′ 
j , (5.18) 

where I ′ j are the master integrals. This implies that 

Ii � 
 

j 

cijI 
′ 
j = 0. (5.19) 

Using this property, we can relate the numerator of these integrands, mI corresponding to I and mI ′ 

corresponding to I ′ , such that 



 
 

l 

d D ℓl 



 

mI,i � 
 

j 

cijmI ′ 
j 

 

 = 0 . (5.20) 

If we have a way to obtain the minimal set of master integrals, we can reduce our scattering-tensor 
basis to a basis of functions that only integrate to zero or to master integrals. We define this basis as 
the master-surface basis. 

FIRE 

To obtain the minimal set of master integrals we make use of computer program FIRE [17]. FIRE 

implements algorithms for reducing generic families of Feynman integrals to a set of master integrals. 
The most important algorithm which it implements is called the Laporta algorithm [14], to which we 

refer for more details. Using FIRE we can find the minimal number of master integrals and then 

specify our choice of master integrals. This allows us to transform the scattering-tensor basis to the 

master-surface basis. 

6 Numerical Unitary Method Applied to Double-Box 

We employ then the numerical unitarity method introduced in section 5 for computing the key diagram 

we study in this document. The following diagram specify the conventions we use for loop-momenta 

routing, external momenta assignments and particle masses in the double-box: 

(6.1) 

The generic Feynman Integral for the double box is thus given by, 

I 
� 
p1, p2, p3, p4; m 2 

1, m 2 
2; D 

 
= 

 

e 2γϵ d
Dℓ1 

iπD/2 

dDℓ2 

iπD/2 

N ({ℓi · ℓ j , ℓm · pk}; D) 

ρ1ρ2ρ3ρ4ρ5ρ6ρ7 

, (6.2) 
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where N ({ℓi · ℓj , ℓm · pk}; D) is a general numerator for the double box and the propagators are given 

by, 

ρ1 = 
� 
m 2 

1 � l 2 
1 

 
, ρ2 = 

� 
�(l1 � p1)

2 
 
, ρ3 = 

� 
m 2 

2 � (l1 � p1 � p2)
2 
 
, ρ4 = 

� 
�(l1 + l2)

2 
 
, 

ρ5 = 
� 
m 2 

1 � l 2 
2 

 
, ρ6 = 

� 
�(l2 � p4)

2 
 
, ρ7 = 

� 
m 2 

2 � (l1 + p1 + p2)
2 
 
. 

(6.3) 

We complete the propagator structure of the double-box by introducing the following inverse propagators 
(see section 3.2.5), 

{(ℓ1 + p4)
2 , (ℓ2 + p1)

2} , (6.4) 

corresponding to the ISPs, ℓ1 · p4 and ℓ2 · p1. With our complete family for the double box, we can 

define the relevant variables for our adaptive loop-momentum parametrization as follows: 

α1 = ℓ1 · p4 , α1,ct = ℓ1 · nct , α2 = ℓ2 · p1 , α2,ct = ℓ2 · nct . (6.5) 

We also define the two functions mu11 and mu22 that we use in the following sections: 

µ11 = g[D�4] 
µν ℓµ 

1 ℓ 
ν 
1 , µ22 = g[D�4] 

µν ℓµ 
2 ℓ 

ν 
2 . (6.6) 

Using these definitions we first construct the double-box tensor basis. For our numerical study, we use 

the following variable substitutions for our numerical study: 

d→ d , s→ 
1 

5 
, t→ 

2 

3 
, m 2 

1 → 
11 

5 
, m 2 

2 → 
3 

17 
, (6.7) 

Where s and t are the Mandelstam variables defined as, 

s = (p1 + p2)
2 

t = (p1 + p4)
2 
. (6.8) 

For the finite field we work in for our numerical unitary method we use prime number, 

p = 2147483629 . (6.9) 

Working in finite number fields resembles closely the work on the rational numbers. The rational 
numbers form a non-algebraically closed field, like the real numbers. When doing calculations in 

these types of number fields within quantum field theories, it is necessary (for example to obtain 

manifestly real representations of the Clifford Algebra) to work with an alternating metric signature 

g′[D] = (+1, �1, +1, �1, ...). See Ref. [4] for more details. 
With all of this information, we can now form the tensor basis, then the scattering-tensor basis, 

and finally, employing FIRE, the master-surface basis for the double box. In the following section we 

describe our results for this procedure. Once we have these bases, we will use the cut-equation (see 

section 5.1) to find the needed master integral coefficients of our double-box. 

6.1 Double-Box Tensor Basis 

The integrand bases we will construct will cover generic integrands in field theory with renormalizable 

power counting. This means that the total power of the loop momentum in the numerator only goes 
to order 6 in the double-box. That is, in the tensor basis monomials will have a maximum degree of 
6. We observe that this power counting is enough to describe the integrands we consider, even though 

the gravity theories employed in principle are non renormalizable. If they were not enough, we would 

simply increase the power counting to match the naively expected one. 
Using the restrictions in power counting, we construct a Mathematica program to provide all the 

monomials present in the tensor basis. We find 160 monomials, that is, the dimension of the function 

space to fit generic integrands in renormalizable theories is 160. We summarize the results in table 1 

below. The complete tensor basis is given in Appendix C. 
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Power Monomials Number 

0 1 1 

1 α1, α1,ct, α2, α2,ct 4 

2 α1 
2 , α1 α1,ct, α1 α2, α1 α2,ct, α1,ct 

2 , ... 10 

3 α1 
3 , α1 

2 α1,ct, α1 
2 α2, α1 

2 α2,ct, α1 α1,ct 
2, ... 20 

4 α1 
4 , α1 

3 α1,ct, α1 
3 α2, α1 

3 α2,ct, α1 
2 α1,ct 

2, ... 35 

5 α1 
4 α2, α1 

4 α2,ct, α1 
3 α2 α1,ct, α1 

3 α1,ct α2,ct, α1 
3 α2 

2, ... 44 

6 α1 
4 α2 

2 , α1 
4 α2 α2,ct, α1 

4 α2,ct 
2 , α1 

3 α2 
2 α1,ct, α1 

3 α2 α1,ct α2,ct, ... 46 

Total 160 

Table 1: Summary of monomials which form the tensor basis for the double-box. Each row shows the 

monomials corresponding to a given power counting. 

6.2 Double-Box Scattering-Plane Tensor Basis 

Building from the tensor basis, and making the appropriate transformations as described in section 5.4, 
we arrive at a basis with 138 surface termsn and 22 monomials in the ISP variables. The monomials in 

the ISP variables are shown in table 2, and the surface terms are shown in table 3. For the complete 

scattering-plane tensor basis see Appendix D. 

Power Monomials ∈ MΓ Number 

0 1 1 

1 α1, α2 2 

2 α1 
2 ,α1 α2,α2 

2 3 

3 α1 
3 ,α1 

2 α2,α1 α2 
2 ,α2 

3 4 

4 α1 
4 ,α1 

3 α2,α1 
2 α2 

2 ,α1 α2 
3 ,α2 

4 5 

5 α1 
4 α2,α1 

3 α2 
2 ,α1 

2 α2 
3 ,α1 α2 

4 4 

6 α1 
4 α2 

2 ,α1 
3 α2 

3 ,α1 
2 α2 

4 3 

Total 22 

Table 2: Summary of monomials on the ISP varaibles for the scattering-plane tensor basis for the 

double-box. Each row shows the monomials corresponding to a given power counting. 
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Power Monomials ∈ SΓ Number 

0 ∅ 0 

1 α1,ct,α2,ct 2 

2 α2 
1,ct -

µ11 

D�4 
,α2

2,ct -
µ22 

D�4 
,α1 α1,ct,α1 α2,ct,α2 α1,ct,α1,ct α2,ct,α2 α2,ct 7 

3 α1 

 
α2
1,ct � µ11 

D�4 

 
,α1 

 
α2
2,ct � µ22

D�4 

 
, ..., α2

1 α1,ct,α
2 
1 α2,ct,α1 α2 α1,ct, ... 16 

4 α2 
1 

 
α2 
1,ct � µ11 

D�4 

 
, ..., α4

1,ct -
µ2 
11 

(D�4)(D�2) 
, ..., α3 

1 α1,ct,α
3 
1 α2,ct,α

2 
1 α2 α1,ct, ... 30 

5 α3
1 

 
α2
2,ct � µ22 

D�4 

 
,α2 

1 α2 

 
α2
1,ct � µ11

D�4 

 
, ..., α4

1 α2,ct,α
3 
1 α2 α1,ct, ... 40 

6 α4 
1

 
α2
2,ct � µ22 

D�4 

 
,α3

1 α2 

 
α2
2,ct � µ22

D�4 

 
, ..., α4

1 α2 α2,ct,α
3 
1 α

2
2 α1,ct,... 43 

Total 138 

Table 3: Summary of surface terms in the scattering-plane tensor basis for the double-box. Each row 

shows the functions corresponding to a given power counting. Notice that the row with zero power 
couting has no functions. 

6.3 IBP Identities for Double-Box 

Using FIRE, we are able to reduce all the ISP monomials in the scattering-plane tensor basis, those 

shown in table 2. When we do this procedure, we see that all these monomials can be reduced on-shell 
(that is, setting all inverse propagators of the double-box to zero) to only two masters. FIRE allows 
us to make a choice of masters. We chose integrals with integrands corresponding to scattering-plane 

monomials with the lowest power counting. That is, we chose the scalar master integrals (power counting 

zero), and then we make an arbitrary choice between α1 and α2 (power counting one). Specifically, the 

master integrand terms we choose are: 
{1, α1} , (6.10) 

which correspond to the set MΓ defined in equation (5.16). 
A feature worth highlighting is that when we put the loop momentum on-shell, monomials in the 

scattering tensor basis which are connected by an exchange of α1 and α2 share the same IBP relation. 
An example of this fact is 

α 2 
1 α2 

IBP ��→ 
4601α1(125383D � 418714) 

1002252(D � 3) 
+ 

21169201(3d � 10) 

501126(D � 3) 
, 

α1α 2 
2 

IBP ��→ 
4601α1(125383D � 418714) 

1002252(D � 3) 
+ 

21169201(3d � 10) 

501126(D � 3) 
. 

This is due to the left-right symmetry of the double-box integral, which effectively exchanges α1 and 

α2. For the complete list of IBP relations we generated from FIRE see Appendix E. 

6.4 Double-Box Master-Surface Basis 

Using the IBP relations from the previous subsection, we can construct the double-box master-surface 

basis. To highlight a specific example of this procedure with the double box using our choice of masters, 

α1α2 
IBP ��→ 

4601 

867 
+ 

13803 

578 
α1 , 

⇒ 

 

dα(...) 
α1α2 � 4601 

867 
� 13803 

578 
α1 

ρ1...ρN 

= 0 , 
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Where this is under the assumption that the integral is done on-shell. 3 We perform this same procedure 

for all the scattering-plane monomials, except for our choice of masters. The masters are already listed 

in equation (6.10) and the surface terms that are shared with the scattering-plane tensor basis are 

summarized in table 3. 
The surface terms in the master-surface basis coming from the IBP relations are summarized in 

table 4, with only a few of the newly created terms which are not shared with the scattering plane 

tensor basis listed. For the complete scattering plane tensor basis, see Appendix F. 

Power Surface Terms from ISPs Number 

0 ∅ 0 

1 α2 � α1 1 

2 α2 
1 − 

α1(41409D−166792) 

1734(D−3) 
− 

4601(D−4) 

867(D−3) 
, α1α2 − 13803α1 

578 
− 4601 

867 
,... 3 

3 α3 
1 − 

α1(1730661549D 2−12797893146D+23503660472) 
3006756(D−3)(D−2) 

− 
4601(D−4)(41409D−140342) 

1503378(D−3)(D−2) 
, ... 4 

4 

α
3 
1α2 − 

4601α1 

� 
5239853451D 2 

− 31568107186D + 47007320944 
 

1737904968(D − 3)(D − 2) 

− 
21169201 

� 
125383D 2 

− 754610D + 1122736 
 

868952484(D − 3)(D − 2) 
, ... 

5 

5 
α
3 
1α

2 
2 − 

21169201α1 

�

15864503101D 2 
− 95188354942D + 141021962832 

 

1004509071504(D − 3)2 

+ 
97399493801(3D − 8)(126539D − 421026) 

502254535752(D − 3)2 
, ... 

4 

6 

α
3 
1 α 3 

2 − 
97399493801α1(3D − 8) 

�

5336927395D2 
− 24840945214D + 23503660472 

 

193535414443104(D − 3)2(D − 2) 

− 
97399493801 

� 
15864503101D3 

− 116049358466D2 + 266387477208D − 185965500096 
 

870909364993968(D − 3)2(D − 2) 
, ... 

3 

Total 20 

Table 4: Summary of surface terms from ISPs in the master-surface integrand basis of the double-box. 
The number in each row counts the monomials corresponding to a given power counting which were 

transformed into surface terms through IBP relations. 

6.5 Cut Equation for Double-Box 

Using Caravel we can now determine the coefficients for our amplitudes in each basis. Using the physical 
parameters defined in equation 6.5, we use caravel to study the case of two scalar black holes, which 

we label “ssSS”, and one scalar and one vector black hole, labelled “ssVV”. The scalar black holes 
correspond to non-spinning black holes while the vector black holes correspond to spinning black holes. 

6.5.1 ssSS Scattering Process 

Using the cut equation and the product of trees calculated by Caravel we determine that there is only 

one non-zero coefficient corresponding to the monomial 1. This coefficient takes the form, 

cΓ,1 = 1347859965. (6.11) 

This result is consistent in each basis. This simplicity is expected from earlier calculations of the ssSS 

process. 

3This is only to simplify the discussion, and because this is what we need for the scope of this work. 
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6.5.2 ssVV Scattering Process 

Again, using the cut equation and the product of trees calculated for the ssVV case, we determine 

that there are 29 non-zero coefficients. In the tensor basis, there are 13 non-zero coefficients which 

correspond to monomials without odd powers of common transverse variables. Meaning that there are 

13 coefficients that will survive when we integrate the integrand. In the scattering-plane tensor basis, 
there are 9 non-zero coefficients which correspond to master terms. The two coefficients of most interest 
are the terms corresponding to our choice master integral in the master-surface basis. We report these 

coefficients for each basis bellow, with the other 27 being found in ancillary files detailed in section 6.7. 

Tensor Basis: 

cΓ,1 =872787083, 

cΓ,α1 
=114476361, 

· · · 
(6.12) 

Scattering-Plane Tensor 

Basis: 

cΓ,1 = 
872787083D + 535800955 

D + 1877880711 
, 

cΓ,α1 
= 
114476361D + 228459914 

D + 1877880711 
, 

· · · 

(6.13) 

Master-Surface Basis: 
cΓ,1 = 

542956566D 3 + 730446438D 2 + 874308839D + 977509702 

D3 + 1877880705D2 + 1617617517D + 1868540996 
, 

cΓ,α1 = 
292690379D 3 + 1591077384D 2 + 1858212605D + 524076769 

D3 + 1877880705D2 + 1617617517D + 1868540996 
. 

(6.14) 

We can now use these coefficients and each basis to solve for the numeric expression of the integrand 

a different points in phase space. 

6.6 Validation 

To check these results, we can sample over different points in phase space than that used to calculate 

the coefficients and verify that the amplitude we calculate using each basis agrees with the amplitude 

calculated by Caravel at these new points in on-shell phase space. This is called the N = N validation 

check. This check is trivial for the ssSS case, as the amplitude is always the same regardless of our 
choice of point in phase space. For the ssVV case, however, we have a more complicated coefficient 
structure, therefore giving us a non-trivial check of our calculation. 

Performing the N = N validation check we find that the amplitude we calculate using our coefficients 
for each basis agree with the independent calculation of the amplitude by Caravel across three separate 

on-shell phase-space points. We give all details for this validation procedure in the ancillary files detailed 

in section 6.7. This confirms that our results do provide the parametrization of the double box we set 
out to find. 

6.7 Ancillary files 

To see all the files used in our study of the two-loop double box with massive particles, visit the GitLab 

for this project: https://gitlab.com/RobertLaughlin/tensor-intergrals.git 

This GitLab contains the files used to create the parametrization, solve for the coefficients, and 

validate our parametrization. Details on the Files are included in the README file of the GitLab 

repository. 
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7 Conclusion and Outlook 

We have successfully parametrized the two-loop double box with massive particles using adaptive loop 

momentum parametrization and IBP relations. This parametrization can be used in calculations of 
gravitational potentials in binary black hole systems to third order in Newton’s constant O(G3). This 
parametrization can simplify related computations. Further, this parametrization can now be used to 

study other two-loop Feynman diagrams which are related to the two-loop double-box studied in this 
work. 

We got these results by completing the propagator structure for the two-loop double-box to obtain 

our ISPs and allow us to take cuts of the two-loop double-box. Then, using adaptive loop momentum 

parametrization on the two-loop double-box Feynman integral, we represented the numerator of the 

scattering amplitude integrand in the tensor basis. We further reduce the tensor basis by transforming 

monomials containing common-transvers variables into surface terms, forming the scattering plane 

tensor basis. Finally, with the help of FIRE, we used our IBP relations to form the master-surface 

basis. We have used this parametrization to calculate the integrands of two scattering process of black 

hole interactions (ssSS and ssVV) using the cut-equation and product of trees calculated by Caravel. 
There are many future directions to take our study of the parametrization of the two-loop double-

box. With our results we could reconstruct the analytic form of the master-integral coefficients with 

the numerical samples that we produce. Additionally, there was a clear symmetry between the α1 and 

α2 terms used in the construction of our parametrization. The integrand parametrization we built gives 
us the flexiblility to redefine master integrals easily. In the future, we might choose the more symmetric 

form, α1 + α2. Then, we can use FIRE to determine the integration by parts relations between the 

monomials with this new choice of master integrals. This may affect the number of non-zero coefficients 
we have in the master-surface basis. Redefinitions of functions for the subspace of surface terms might 
reduce the number of non-zero coefficients. In the future we could explore finding functions for the 

subspace of surface terms which minimizes the number of non-zero coefficients in our parametrization 

for the ssVV case. 
Our parametrization has the flexibility to study more scattering processes. In the future, we might 

apply this to the vector-vector (vvVV) scattering process, corresponding to two spinning black holes, 

which can give conservative potential terms which look like ⃗ S1 · ⃗ S2. Once we have obtained this 
parametrization we could search for the analytic expression of the coefficients in the parametirzation 

of the vvVV scattering process case as well. With all these different directions to take our study of the 

parametrization, we see that our work opens many doors for further research. 
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Appendices 

A Relativity 

This paper assumes that the reader has a working understanding of special relativity. This Appendix 

quotes the main results from special relativity which are used throughout this paper. For a more 

complete understanding of special relativity see Theory of Special Relativity by Nadia L. Zakamska [19]. 

Special Relativity 

In physics, we are primarily interested in tracking the position and movement of objects. Typically, 
these are measured by the spatial coordinates and momentum of the object, respectively, relative to 

some reference frame. Reference frames are defined by a coordinate system to measure positions and a 

clock to measure changes in positions [19]. An inertial reference frame is one in which time and space 

translational and rotational symmetries are respected and in which free particles moving at a constant 
speed keep their velocity. 

In classical mechanics, objects are characterized by spatial coordinates and linear momentum with 

time as a parameter. This characterization of position and momentum is expressed in the following 

forms, respectively: 

x⃗ (t) = 
� 
x (t) , y (t) , z (t) 

 
; (A.1) 

p⃗ (t) = 
� 
px (t) , py (t) , pz (t) 

 
; (A.2) 

In special relativity, we find we need to think of time as being relative to the reference frame. This result 
came as a consequence of a maximum signal speed (that experimentally is observed to be the speed of 
light in a vacuum) which is the same regardless of reference frame and of the principle that fundamental 
laws of physics remain the same regardless of inertial reference frame. As time is now relative, we must 
go from our spatial 3-vectors and momentum 3-vectors to spatial 4-vectors and momentum 4-vector. 

x = 
� 
ct, x, y, z 

 
; (A.3) 

p = 
� 
E 
c 
, px, py, pz 

 
; (A.4) 

In special relativity, we must define a metric tensor which allows us to express our equations in covariant 
form, i.e. the equation is true in every reference frame. Here we use the (+ - - -) metric signature 

ηµν = 

 





 

1 0 0 0 

0 �1 0 0 

0 0 �1 0 

0 0 0 �1 

 







, (A.5) 

and 

ηµν = 

 





 

1 0 0 0 

0 �1 0 0 

0 0 �1 0 

0 0 0 �1 

 







. (A.6) 

to translate between two inertial reference frames we take a Lorentz transformation between the two 

frames. For a boost in the x-direction, this Lorentz transform takes the form 

Λµ 
ν = 

 





 

cosh (η) � sinh (η) 0 0 

� sinh (η) cosh (η) 0 0 

0 0 1 0 

0 0 0 1 

 







, (A.7) 
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where cosh (η) = 1 
 

1� U
2 

c 2 

and sinh (η) = 1 
 

1� U
2 

c 2 

U 
c 
with U being the velocity of one inertial frame with 

respect to the other. 
In order to maintain covariant equations, our operators must also be four vectors and four tensors. 

One operator that we make use of frequently is the partial derivative operator ∂µ which takes the form 

∂µ = 

 
1

c 

∂ 

∂t
, 
∂ 

∂x
, 
∂ 

∂y
, 
∂ 

∂z 

 

. (A.8) 

The final important result we will provide is the relativistic dispersion relation. This is a consequence 

of the invariance of 4-scalars. Therefore, 

pµp
µ = p 2 = constant. (A.9) 

In the frame of the particle p = 
 

E
c 
, ⃗0 
 
, where E 

c 
≡ mc 

 

1�( v
c )

2 
. p2 = (mc)

2 
, therefore by the invariance 

of 4-scalars, 

p 2 = 

 
E 

c 

2 

� p⃗ · p⃗ = (mc)
2 
. (A.10) 

or in the more standard form 

E 2 = c 2 p⃗ · p⃗+ 
� 
mc 2 

2 
. (A.11) 

This equation, known as the relativistic dispersion relation is an important result used for the develop-
ment of QFT. 

Keep in mind that throughout this paper we used natural units h̄ = c = 1. In this Appendix, we 

have shown c explicitly to make the notation more familiar. 
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B Alternate approach to Master-Surface Parametrization 

Before the use of adaptive parametrization was used for master-surface decomposition, an a different 
method was used. Although we did not use this method for our study of the double box, we include 

the general theory to provide a historical perspective of the methods used. 
If we have a generic Feynman integral numerator N = N ({ki · kj ; ki · pm}; D) which is a polynomical 

in ki · kj and ki · pm, we construct an ansatz 

NΓ = 
 

i∈QΓ 

cΓ,imΓ,i ({ki · kj ; ki · pm}; D) , (B.1) 

where Γ is a propagator structure {ρ1, ..., ρp} with ρk = m2 
k � k2 

k � iϵ, cΓ,i is a coefficient function of 
pi · pj and D, and {mΓ,i} is a set of functions. 

We say that {mΓ,i} is a master/surface basis if QΓ = MΓ ∪ SΓ such that 



 
L
 

i=1 

e γϵ d
Dk 

iπD/2 

 
mΓ,i ({ki · k j ; ki · pm}; D) 

ρ1...ρ p 

= IΓ,i i ∈ MΓ , (B.2) 

where IΓ,i is a master integral, and 



 
L
 

i=1 

e γϵ d
Dk 

iπD/2 

 
mΓ,i ({ki · kj ; ki · pm}; D) 

ρ1...ρ p 

= 0 i ∈ SΓ . (B.3) 

Linear algebra allows us to fix our cΓ,i as constants. So now we need a method to generate these {mi}. 
Suppose we have an IBP relation, I1 = c11I

′ 
1 + c12I

′ 
2. 

⇒ I1 � c11I 
′ 
1 � c12I 

′ 
2 = 0 . 

We could then generate a surface term of our Feynman integrals from I1, I
′ 
1, and I ′ 2. The other technique 

we will use to generate surface terms will be by using equation (3.36), 
 

dDkj
� 
iπD/2 

 
∂ 

∂kµ 
j 

 
tr (kl) u

µ 
j 

ρ1...ρ p 

 

= 0 , (B.4) 

where ρk = m2 
k�k2 

k� iϵ as before, uµ 
j is a unitary compatible IBP-generating vector, and tr (kl) is some 

function of the loop momentum. 

 
dDk j
� 
iπD/2 

 
∂ 

∂kµ 
j 

 
tr (kl) u

µ 
j 

ρ1...ρ p 

 

= 0 , 

 
dDk j
� 
iπD/2 

 

 



∂tr (kl) 

∂kµ 
j 

uµ 
j 

ρ1...ρ p 

+ tr (kl) 

 

 
1 

ρ1...ρ p 

∂uµ 
j 

∂kµ 
j 

� 
uµ 
j 

ρ1...ρ p 

 

k∈pΓ 

∂ρk 

∂kµ 
j 

1 

ρk 





 

 = 0 . 

we then apply the following condition, 

uµ 
j 

∂ 

∂kµ 
j 

ρk = fkρ . (B.5) 

This condition is know as the Syzygy equation [12]. When applied we yield, 

 
dD kj
� 
iπD/2 

 
1 

ρ1...ρ p 

 

uµ 
j 

∂tr (kl) 

∂kµ 
j 

+ tr (kl) 

 

 
∂uµ 

j 

∂kµ 
j 

� 
 

k∈pΓ 

fk 





 

 = 0 . (B.6) 

Comparing equation (B.6) to (B.3) we see that 

mΓ = uµ 
j 

∂tr (kl) 

∂kµ 
j 

+ tr (kl) 

 

 
∂uµ 

j 

∂kµ 
j 

� 
 

k∈pΓ 

fk 

 

 . (B.7) 

This equation provides us a way to industrially produce surface terms [2]. Using this equation we will 
be able to decompose a chosen family of Feynman integrals into surface and master integrals. 
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C Double-Box Tensor Basis 

The entire tensor basis for the double box is expressed below. 

{1, α1, α1,ct, α2, α2,ct, α
2 
1, α1α1,ct, α1α2, α1α2,ct, α

2 
1,ct, α2α1,ct, α1,ct α2,ct, α

2 
2, α2α2,ct, α

2 
2,ct, α

3 
1, 

α2 
1 α1,ct, α

2 
1 α2, α

2 
1 α2,ct, α1α

2 
1,ct, α1α2α1,ct, α1α1,ct α2,ct, α1α

2 
2, α1α2α2,ct, α1α

2 
2,ct, α

3 
1,ct, 

α2α
2 
1,ct, α

2 
1,ct α2,ct, α

2 
2 α1,ct, α2α1,ct α2,ct, α1,ct α

2 
2,ct, α

3 
2, α

2 
2 α2,ct, α2α

2 
2,ct, α

3 
2,ct, α

4 
1, α

3 
1 α1,ct, 

α3 
1 α2, α

3 
1 α2,ct, α

2 
1 α

2 
1,ct, α

2 
1 α2α1,ct, α

2 
1 α1,ct α2,ct, α

2 
1 α

2 
2, α

2 
1 α2α2,ct, α

2 
1 α

2 
2,ct, α1α

3 
1,ct, α1α2α

2 
1,ct, 

α1α
2 
1,ct α2,ct, α1α

2 
2 α1,ct, α1α2α1,ct α2,ct, α1α1,ct α

2 
2,ct, α1α

3 
2, α1α

2 
2 α2,ct, α1α2α

2 
2,ct, α1α

3 
2,ct, 

α4 
1,ct, α2α

3 
1,ct, α

3 
1,ct α2,ct, α

2 
2 α

2 
1,ct, α2α

2 
1,ct α2,ct, α

2 
1,ct α

2 
2,ct, α

3 
2 α1,ct, α

2 
2 α1,ct α2,ct, α2α1,ct α

2 
2,ct, 

α1,ct α
3 
2,ct, α

4 
2, α

3 
2 α2,ct, α

2 
2 α

2 
2,ct, α2α

3 
2,ct, α

4 
2,ct, α

4 
1 α2, α

4 
1 α2,ct, α

3 
1 α2α1,ct, α

3 
1 α1,ct α2,ct, α

3 
1 α

2 
2, 

α3 
1 α2α2,ct, α

3 
1 α

2 
2,ct, α

2 
1 α2α

2 
1,ct, α

2 
1 α

2 
1,ct α2,ct, α

2 
1 α

2 
2 α1,ct, α

2 
1 α2α1,ct α2,ct, α

2 
1 α1,ct α

2 
2,ct, α

2 
1 α

3 
2, 

α2 
1 α

2 
2 α2,ct, α

2 
1 α2α

2 
2,ct, α

2 
1 α

3 
2,ct, α1α2α

3 
1,ct, α1α

3 
1,ct α2,ct, α1α

2 
2 α

2 
1,ct, α1α2α

2 
1,ct α2,ct, 

α1α
2 
1,ct α

2 
2,ct, α1α

3 
2 α1,ct, α1α

2 
2 α1,ct α2,ct, α1α2α1,ct α

2 
2,ct, α1α1,ct α

3 
2,ct, α1α

4 
2, α1α

3 
2 α2,ct, 

α1α
2 
2 α

2 
2,ct, α1α2α

3 
2,ct, α1α

4 
2,ct, α2α

4 
1,ct, α

4 
1,ct α2,ct, α

2 
2 α

3 
1,ct, α2α

3 
1,ct α2,ct, α 3 

1,ct α
2 
2,ct, α

3 
2 α

2 
1,ct, 

α2 
2 α

2 
1,ct α2,ct, α2α

2 
1,ct α

2 
2,ct, α 2 

1,ct α
3 
2,ct, α

4 
2 α1,ct, α

3 
2 α1,ct α2,ct, α

2 
2 α1,ct α

2 
2,ct, α2α1,ct α

3 
2,ct, 

α1,ct α
4 
2,ct, α

4 
1 α

2 
2, α

4 
1 α2α2,ct, α

4 
1 α

2 
2,ct, α

3 
1 α

2 
2 α1,ct, α

3 
1 α2α1,ct α2,ct, α

3 
1 α1,ct α

2 
2,ct, α

3 
1 α

3 
2, α

3 
1 α

2 
2 α2,ct, 

α3 
1 α2α

2 
2,ct, α

3 
1 α

3 
2,ct, α

2 
1 α

2 
2 α

2 
1,ct, α

2 
1 α2α

2 
1,ct α2,ct, α

2 
1 α

2 
1,ct α

2 
2,ct, α

2 
1 α

3 
2 α1,ct, α

2 
1 α

2 
2 α1,ct α2,ct, 

α2 
1 α2α1,ct α

2 
2,ct, α

2 
1 α1,ct α

3 
2,ct, α

2 
1 α

4 
2, α

2 
1 α

3 
2 α2,ct, α

2 
1 α

2 
2 α

2 
2,ct, α

2 
1 α2α

3 
2,ct, α

2 
1 α

4 
2,ct, α1α

2 
2 α

3 
1,ct, 

α1α2α
3 
1,ct α2,ct, α1α

3 
1,ct α

2 
2,ct, α1α

3 
2 α

2 
1,ct, α1α

2 
2 α

2 
1,ct α2,ct, α1α2α

2 
1,ct α

2 
2,ct, α1α

2 
1,ct α

3 
2,ct, 

α1α
4 
2 α1,ct, α1α

3 
2 α1,ct α2,ct, α1α

2 
2 α1,ct α

2 
2,ct, α1α2α1,ct α

3 
2,ct, α1α1,ct α

4 
2,ct, α

2 
2 α

4 
1,ct, α2α

4 
1,ct α2,ct, 

α4 
1,ct α

2 
2,ct, α

3 
2 α

3 
1,ct, α

2 
2 α

3 
1,ct α2,ct, α2α

3 
1,ct α

2 
2,ct, α

3 
1,ct α

3 
2,ct, α

4 
2 α

2 
1,ct, α

3 
2 α

2 
1,ct α2,ct, α

2 
2 α

2 
1,ct α

2 
2,ct, 

α2α
2 
1,ct α

3 
2,ct, α

2 
1,ct α

4 
2,ct} 
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D Double-Box Scattering Tensor Basis 

The entire scattering tensor basis for the double box is expressed below. 

{{1, α1, α2, α
2 
1, α1α2, α

2 
2, α

3 
1, α

2 
1 α2, α1α

2 
2, α

3 
2, α

4 
1, α

3 
1 α2, α

2 
1 α

2 
2, α1α

3 
2, α

4 
2, α

4 
1 α2, α

3 
1 α

2 
2, α

2 
1 α

3 
2, 

α1α
4 
2, α

4 
1 α

2 
2, α

3 
1 α

3 
2, α

2 
1 α

4 
2}, {α2 

1,ct−µ11/(−4+D), α2 
2,ct−µ22/(−4+D), 

α1(α
2 
1,ct−µ11/(−4+D)), α1(α

2 
2,ct−µ22/(−4+D)), α2(α

2 
1,ct−µ11/(−4+D)), 

α2(α
2 
2,ct−µ22/(−4+D)), α2 

1(α
2 
1,ct−µ11/(−4+D)), α2 

1(α
2 
2,ct−µ22/(−4+D)), 

α1α2(α 2 
1,ct−µ11/(−4+D)), α1α2(α 2 

2,ct−µ22/(−4+D)), α 4 
1,ct−µ11ˆ2/((−4+D)(−2+D)), 

α2 
2(α 2 

1,ct−µ11/(−4+D)), (α2 
1,ct−µ11/(−4+D))(α2 

2,ct−µ22/(−4+D)), α2 
2(α

2 
2,ct−µ22/(−4+D)), 

α4 
2,ct−µ22ˆ2/((−4+D)(−2+D)), α 3 

1(α 2 
2,ct−µ22/(−4+D)), α 2 

1 α2(α
2 
1,ct−µ11/(−4+D)), 

α2 
1 α2(α

2 
2,ct−µ22/(−4+D)), α1α

2 
2(α

2 
1,ct−µ11/(−4+D)), 

α1(α
2 
1,ct−µ11/(−4+D))(α2 

2,ct−µ22/(−4+D)), α1α
2 
2(α

2 
2,ct−µ22/(−4+D)), 

α1(α
4 
2,ct−µ22ˆ2/((−4+D)(−2+D))), α2(α

4 
1,ct−µ11ˆ2/((−4+D)(−2+D))), 

α3 
2(α

2 
1,ct−µ11/(−4+D)), α2(α

2 
1,ct−µ11/(−4+D))(α2 

2,ct−µ22/(−4+D)), 

α4 
1(α

2 
2,ct−µ22/(−4+D)), α3 

1 α2(α
2 
2,ct−µ22/(−4+D)), α2 

1 α
2 
2(α

2 
1,ct−µ11/(−4+D)), 

α2 
1(α

2 
1,ct−µ11/(−4+D))(α2 

2,ct−µ22/(−4+D)), α2 
1 α

2 
2(α

2 
2,ct−µ22/(−4+D)), 

α2 
1(α

4 
2,ct−µ22ˆ2/((−4+D)(−2+D))), α1α

3 
2(α

2 
1,ct−µ11/(−4+D)), 

α1α2(α
2 
1,ct−µ11/(−4+D))(α2 

2,ct−µ22/(−4+D)), α2 
2(α

4 
1,ct−µ11ˆ2/((−4+D)(−2+D))), 

(α4 
1,ct−µ11ˆ2/((−4+D)(−2+D)))(α2 

2,ct−µ22/(−4+D)), α4 
2(α

2 
1,ct−µ11/(−4+D)), 

α2 
2(α

2 
1,ct−µ11/(−4+D))(α2 

2,ct−µ22/(−4+D)), 

(α2 
1,ct−µ11/(−4+D))(α4 

2,ct−µ22ˆ2/((−4+D)(−2+D))), α1,ct, α2,ct, α1α1,ct, α1α2,ct, α2α1,ct, 

α1,ct α2,ct, α2α2,ct, α
2 
1 α1,ct, α

2 
1 α2,ct, α1α2α1,ct, α1α1,ct α2,ct, α1α2α2,ct, α

3 
1,ct, α

2 
1,ct α2,ct, 

α2 
2 α1,ct, α2α1,ct α2,ct, α1,ct α

2 
2,ct, α

2 
2 α2,ct, α

3 
2,ct, α

3 
1 α1,ct, α

3 
1 α2,ct, α

2 
1 α2α1,ct, α

2 
1 α1,ct α2,ct, 

α2 
1 α2α2,ct, α1α

3 
1,ct, α1α

2 
1,ct α2,ct, α1α

2 
2 α1,ct, α1α2α1,ct α2,ct, α1α1,ct α

2 
2,ct, α1α

2 
2 α2,ct, α1α

3 
2,ct, 

α2α
3 
1,ct, α

3 
1,ct α2,ct, α2α

2 
1,ct α2,ct, α

3 
2 α1,ct, α

2 
2 α1,ct α2,ct, α2α1,ct α

2 
2,ct, α1,ct α

3 
2,ct, α

3 
2 α2,ct, 

α2α
3 
2,ct, α

4 
1 α2,ct, α

3 
1 α2α1,ct, α

3 
1 α1,ct α2,ct, α

3 
1 α2α2,ct, α

2 
1 α

2 
1,ct α2,ct, α

2 
1 α

2 
2 α1,ct, α

2 
1 α2α1,ct α2,ct, 

α2 
1 α1,ct α

2 
2,ct, α

2 
1 α

2 
2 α2,ct, α 2 

1 α
3 
2,ct, α1α2α 3 

1,ct, α1α 3 
1,ct α2,ct, α1α2α 2 

1,ct α2,ct, α1α
3 
2 α1,ct, 

α1α
2 
2 α1,ct α2,ct, α1α2α1,ct α

2 
2,ct, α1α1,ct α

3 
2,ct, α1α

3 
2 α2,ct, α1α2α

3 
2,ct, α

4 
1,ct α2,ct, α

2 
2 α

3 
1,ct, 

α2α
3 
1,ct α2,ct, α 3 

1,ct α
2 
2,ct, α

2 
2 α

2 
1,ct α2,ct, α

2 
1,ct α

3 
2,ct, α

4 
2 α1,ct, α 3 

2 α1,ct α2,ct, α 2 
2 α1,ct α

2 
2,ct, 

α2α1,ct α
3 
2,ct, α1,ct α

4 
2,ct, α

4 
1 α2α2,ct, α

3 
1 α

2 
2 α1,ct, α

3 
1 α2α1,ct α2,ct, α

3 
1 α1,ct α

2 
2,ct, α

3 
1 α

2 
2 α2,ct, α

3 
1 α

3 
2,ct, 

α2 
1 α2α

2 
1,ct α2,ct, α

2 
1 α

3 
2 α1,ct, α

2 
1 α

2 
2 α1,ct α2,ct, α

2 
1 α2α1,ct α

2 
2,ct, α

2 
1 α1,ct α

3 
2,ct, α

2 
1 α

3 
2 α2,ct, α

2 
1 α2α

3 
2,ct, 

α1α
2 
2 α

3 
1,ct, α1α2α

3 
1,ct α2,ct, α1α

3 
1,ct α

2 
2,ct, α1α

2 
2 α

2 
1,ct α2,ct, α1α

2 
1,ct α

3 
2,ct, α1α

4 
2 α1,ct, 

α1α
3 
2 α1,ct α2,ct, α1α

2 
2 α1,ct α

2 
2,ct, α1α2α1,ct α

3 
2,ct, α1α1,ct α

4 
2,ct, α2α

4 
1,ct α2,ct, α

3 
2 α

3 
1,ct, 

α2 
2 α

3 
1,ct α2,ct, α2α

3 
1,ct α

2 
2,ct, α

3 
1,ct α

3 
2,ct, α

3 
2 α

2 
1,ct α2,ct, α2α

2 
1,ct α

3 
2,ct}} 
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E IBP Identities for Double-Box 

Using FIRE we were able to produce the IBP relations for the double box listed below. in FIRE 

notation, the integrand is expressed as F [1, {ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8, ν9}], where each νi correspond 

to the power of ith inverse propagator in the Feynman integral. The double box has seven propagators, 
so ν8 and ν9 should be understood to correspond to the inverse propagators we introduced to complete 

the family for double box Feynman diagram. Therefore, we can understand ν8 to correspond to the 

power of α1 and ν9 to correspond to the power of α2 in our monomial. Our command //Monomial 
translates the result of the IBP relation that FIRE returns into our notation for the master integrals 
{1, α1}. 

F[1, {1, 1, 1, 1, 1, 1, 1, 0, 0}] // Monomial 
1 

F[1, {1, 1, 1, 1, 1, 1, 1, −1, 0}] // Monomial 
α1 

F[1, {1, 1, 1, 1, 1, 1, 1, 0, −1}] // Monomial 
α1 

F[1, {1, 1, 1, 1, 1, 1, 1, −1, −1}] // Monomial 
13803α1 

578 
+ 4601 

867 

F[1, {1, 1, 1, 1, 1, 1, 1, 0, −2}] // Monomial 
α1(41409d�166792) 

1734(D�3) 
+ 

4601(D�4) 

867(D�3) 

F[1, {1, 1, 1, 1, 1, 1, 1, −2, 0}] // Monomial 
α1(41409d�166792) 

1734(D�3) 
+ 

4601(D�4) 

867(D�3) 

F[1, {1, 1, 1, 1, 1, 1, 1, −2, −1}] // Monomial 
4601α1(125383D�418714) 

1002252(D�3) 
+ 

21169201(3D�10) 

501126(D�3) 

F[1, {1, 1, 1, 1, 1, 1, 1, −1, −2}] // Monomial 
4601α1(125383D�418714) 

1002252(D�3) 
+ 

21169201(3D�10) 

501126(D�3) 

F[1, {1, 1, 1, 1, 1, 1, 1, −3, 0}] // Monomial 
α1(1730661549D 2 �12797893146D+23503660472) 

3006756(D�3)(D�2) 
+ 

4601(D�4)(41409D�140342) 

1503378(D�3)(D�2) 

F[1, {1, 1, 1, 1, 1, 1, 1, 0, −3}] // Monomial 
α1(1730661549D 2 �12797893146D+23503660472) 

3006756(D�3)(D�2) 
+ 

4601(D�4)(41409D�140342) 

1503378(D�3)(D�2) 

F[1, {1, 1, 1, 1, 1, 1, 1, −2, −2}] // Monomial 
21169201(125383D 2�751142D+1111176) 

868952484(D�3)2 + 
21169201α1 (3D�10)(126539D�337052) 

579301656(D�3)2 

F[1, {1, 1, 1, 1, 1, 1, 1, −3, −1}] // Monomial 
4601α1(5239853451D 2�31568107186D+47007320944) 

1737904968(D�3)(D�2) 
+ 

21169201(125383D 2�754610D+1122736) 
868952484(D�3)(D�2) 

F[1, {1, 1, 1, 1, 1, 1, 1, −1, −3}] // Monomial 
4601α1(5239853451D 2�31568107186D+47007320944) 

1737904968(D�3)(D�2) 
+ 

21169201(125383D 2�754610D+1122736) 
868952484(D�3)(D�2) 

F[1, {1, 1, 1, 1, 1, 1, 1, −4, 0}] // Monomial 
4601(D�4)(576887183D 2�3519829414D+5327943688) 

868952484(D�3)(D�2)(D�1) 
+ 

α1(24108565728051D 3�243679768825634D 2 +812054492791264D�892292966159008) 
1737904968(D�3)(D�2)(D�1) 

F[1, {1, 1, 1, 1, 1, 1, 1, 0, −4}] // Monomial 
4601(D�4)(576887183D 2�3519829414D+5327943688) 

868952484(D�3)(D�2)(D�1) 
+ 

α1(24108565728051D 3�243679768825634D 2 +812054492791264D�892292966159008) 
1737904968(D�3)(D�2)(D�1) 

... 
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F[1, {1, 1, 1, 1, 1, 1, 1, −1, −4}] // Monomial 
4601α1(218977736303103D 3�1763954877049344D 2 +4647281343312980D�4001733231962720) 

3013527214512(D�3)(D�2)(D�1) 
+ 

21169201(5239853451D 3�42176800568D 2 +111050449684D�95578515680) 
1506763607256(D�3)(D�2)(D�1) 

F[1, {1, 1, 1, 1, 1, 1, 1, −4, −1}] // Monomial 
4601α1(218977736303103D 3�1763954877049344D 2 +4647281343312980D�4001733231962720) 

3013527214512(D�3)(D�2)(D�1) 
+ 

21169201(5239853451D 3�42176800568D 2 +111050449684D�95578515680) 
1506763607256(D�3)(D�2)(D�1) 

F[1, {1, 1, 1, 1, 1, 1, 1, −2, −3}] // Monomial 
21169201α1 (15864503101D 2�95188354942D+141021962832) 

1004509071504(D�3)2 + 
97399493801(3D�8)(126539D�421026) 

502254535752(D�3)2 

F[1, {1, 1, 1, 1, 1, 1, 1, −3, −2}] // Monomial 
21169201α1 (15864503101D 2�95188354942D+141021962832) 

1004509071504(D�3)2 + 
97399493801(3D�8)(126539D�421026) 

502254535752(D�3)2 

F[1, {1, 1, 1, 1, 1, 1, 1, −3, −3}] // Monomial 
97399493801α1(3D�8)(5336927395D 2�24840945214D+23503660472) 

193535414443104(D�3)2(D�2) 
+ 

97399493801(15864503101D 3�116049358466D 2 +266387477208D�185965500096) 
870909364993968(D�3)2(D�2) 

F[1, {1, 1, 1, 1, 1, 1, 1, −4, −2}] // Monomial 
21169201α1 (662990479498665D 3�4872230078680774D 2 +11258936570700304D�7949126000914176) 

1741818729987936(D�3)2 (D�1) 
+ 

97399493801(15864503101D 3�116488195718D 2 +269017828048D�189859148544) 
870909364993968(D�3)2(D�1) 

F[1, {1, 1, 1, 1, 1, 1, 1, −2, −4}] // Monomial 
21169201α1 (662990479498665D 3�4872230078680774D 2 +11258936570700304D�7949126000914176) 

1741818729987936(D�3)2 (D�1) 
+ 

97399493801(15864503101D 3�116488195718D 2 +269017828048D�189859148544) 
870909364993968(D�3)2(D�1) 
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F Double-Box Master-Surface Basis 

The complete master-surface basis for the double box is presented below. The master terms are pre-
sented in the first list, while the surface terms are presented in the second list. 

{{1, α1}, 
{α2 � α1, α

2 
1 � 

(41409D�166792)α1 

1734(D�3) 
� 

4601(D�4) 

867(D�3) 
, α2α1 � 13803α1 

578 
� 4601 

867 
, 

α2 
2 � 

4601(D�4) 

867(D�3) 
� 

(41409D�166792)α1 

1734(D�3) 
, 

α3 
1 � 

(1730661549D 2 �12797893146D+23503660472)α1 

3006756(D�3)(D�2) 
� 

4601(D�4)(41409D�140342) 

1503378(D�3)(D�2) 
, 

α2α
2 
1 � 

4601(125383D�418714)α1 

1002252(D�3) 
� 

21169201(3D�10) 

501126(D�3) 
, 

α1α
2 
2 � 

21169201(3D�10) 

501126(D�3) 
� 

4601(125383D�418714)α1 

1002252(D�3) 
, 

α3 
2 � 

4601(D�4)(41409D�140342) 

1503378(D�3)(D�2) 
� 

(1730661549D 2�12797893146D+23503660472)α1 

3006756(D�3)(D�2) 
, 

α4 
1 � 

(24108565728051D 3�243679768825634D 2 +812054492791264D�892292966159008)α1 

1737904968(D�3)(D�2)(D�1) 
� 

4601(D�4)(576887183D 2�3519829414D+5327943688) 
868952484(D�3)(D�2)(D�1) 

, 

α2α
3 
1 � 

4601(5239853451D 2�31568107186D+47007320944)α1 

1737904968(D�3)(D�2) 
� 

21169201(125383D 2 �754610D+1122736) 
868952484(D�3)(D�2) 

, 

α2 
1 α

2 
2 � 

21169201(3D�10)(126539D�337052)α1 

579301656(D�3)2 � 
21169201(125383D 2�751142D+1111176) 

868952484(D�3)2 , 

α1α
3 
2 � 

21169201(125383D 2�754610D+1122736) 
868952484(D�3)(D�2) 

� 
4601(5239853451D 2�31568107186D+47007320944)α1 

1737904968(D�3)(D�2) 
, 

α4 
2 � 

4601(D�4)(576887183D 2�3519829414D+5327943688) 
868952484(D�3)(D�2)(D�1) 

� 

(24108565728051D 3�243679768825634D 2 +812054492791264D�892292966159008)α1 

1737904968(D�3)(D�2)(D�1) 
, 

α2α
4 
1 � 

4601(218977736303103D 3�1763954877049344D 2 +4647281343312980D�4001733231962720)α1 

3013527214512(D�3)(D�2)(D�1) 
� 

21169201(5239853451D 3�42176800568D 2 +111050449684D�95578515680) 
1506763607256(D�3)(D�2)(D�1) 

, α2 
2 α

3 
1 � 

21169201(15864503101D 2�95188354942D+141021962832)α1 

1004509071504(D�3)2 � 
97399493801(3D�8)(126539D�421026) 

502254535752(D�3)2 , 

α2 
1 α

3 
2 � 

97399493801(3D�8)(126539D�421026) 

502254535752(D�3)2 � 

21169201(15864503101D 2�95188354942D+141021962832)α1 

1004509071504(D�3)2 , 

α1α
4 
2 � 

21169201(5239853451D 3�42176800568D 2 +111050449684D�95578515680) 
1506763607256(D�3)(D�2)(D�1) 

� 

4601(218977736303103D 3�1763954877049344D 2 +4647281343312980D�4001733231962720)α1 

3013527214512(D�3)(D�2)(D�1) 
, α2 

2 α
4 
1 � 

21169201(662990479498665D 3�4872230078680774D 2 +11258936570700304D�7949126000914176)α1 

1741818729987936(D�3)2(D�1) 
� 

97399493801(15864503101D 3 �116488195718D 2 +269017828048D�189859148544) 
870909364993968(D�3)2(D�1) 

, 

α3 
1 α

3 
2 � 

97399493801(3D�8)(5336927395D 2�24840945214D+23503660472)α1 

193535414443104(D�3)2(D�2) 
� 

97399493801(15864503101D 3 �116049358466D 2 +266387477208D�185965500096) 
870909364993968(D�3)2(D�2) 

, 

α2 
1 α

4 
2 � 

97399493801(15864503101D 3�116488195718D 2 +269017828048D�189859148544) 
870909364993968(D�3)2(D�1) 

� 

21169201(662990479498665D 3�4872230078680774D 2 +11258936570700304D�7949126000914176)α1 

1741818729987936(D�3)2(D�1) 
, 

α2 
1,ct � µ11 

D�4 
, α2 

2,ct � µ22 

D�4 
, α1 

 
α2 
1,ct � µ11 

D�4 



, α1 

 
α2 
2,ct � µ22 

D�4 

 
, α2 

 
α2 
1,ct � µ11 

D�4 

 
, 

α2 

 
α2 
2,ct � µ22 

D�4 

 
, α2 

1 

 
α2 
1,ct � µ11 

D�4 

 
, α2 

1 



α2 
2,ct � µ22 

D�4 

 
, α1α2 

 
α2 
1,ct � µ11 

D�4 



, 

α1α2 



α2 
2,ct � µ22 

D�4 



, α4 
1,ct � 

µ2 
11 

(D�4)(D�2) 
, α2 

2 



α2 
1,ct � µ11 

D�4 

 
, ... 
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 
α2 
1,ct � µ11 

D�4 

 
α2 
2,ct � µ22 

D�4 

 
, α2 

2 

 
α2 
2,ct � µ22 

D�4 

 
, α4 

2,ct � 
µ2 
22 

(D�4)(D�2) 
, α3 

1 

 
α2 
2,ct � µ22 

D�4 

 
, 

α2 
1α2 

 
α2 
1,ct � µ11 

D�4 

 
, α2 

1 α2 



α2 
2,ct � µ22 

D�4 

 
, α1α

2 
2 

 
α2 
1,ct � µ11 

D�4 

 
, 

α1 

 
α2 
1,ct � µ11 

D�4 

 
α2 
2,ct � µ22 

D�4 

 
, α1α

2 
2 

 
α2 
2,ct � µ22 

D�4 

 
, α1 

 
α4 
2,ct � 

µ2 
22 

(D�4)(D�2) 

 
, 

α2 

 
α4 
1,ct � 

µ2 
11 

(D�4)(D�2) 

 
, α3 

2 

 
α2 
1,ct � µ11 

D�4 



, α2 

 
α2 
1,ct � µ11 

D�4 

 
α2 
2,ct � µ22 

D�4 

 
, 

α4 
1

 
α2 
2,ct � µ22 

D�4 

 
, α3 

1 α2 

 
α2 
2,ct � µ22 

D�4 

 
, α2 

1 α
2 
2 

 
α2 
1,ct � µ11 

D�4 

 
, 

α2 
1 

 
α2 
1,ct � µ11 

D�4 

 
α2 
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