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Abstract

The Standard Model is a useful theory due to its predictive capabil-

ities. Hadrons, as described by Standard Model, consist of quarks and

gluons, collectively called partons. However, there is no theory that

provides an exact state of a parton within a hadron. The properties

associated with partons currently must be gained empirically. This is

done by fitting free parameters in models with data from a number

of different experiments. The Parton Distribution Functions (PDFs)

corresponding to the up, down, antiup, and antidown quarks and the

gluon have been well constrained since they are the lightest partons.

The next lightest quark distribution, the strange-antistrange PDF, is

the subject studied here. Using the most recent CTEQ-Jefferson Lab

(CJ15) PDF set as a starting point and analysing new data sets sen-

sitive to the strange quark PDFs one could determine constraints for

the strange PDF. Experiments with a center-of-mass energy,
√
s, of 7

TeV data from the Compact Muon Solenoid (CMS) and 8 TeV Large

Hadron Collider b (LHCb) detectors is analysed as a means of gaining

constraints. However, the addition of these data sets to the original

CJ15 data sets are not significant enough to support changing the

strange distribution. Additional factors dependent on the momentum

fraction, x, are added to the original CJ15 parameters and the ad-

dition of these factors are partially supported by the additional data

sets, still more research is needed. The addition of new data sets with

observables sensitive to the strange quark such as W + c final state
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data at the Large Hadron Collider (LHC) may need to be considered

to gain further constraints of the strange PDF.
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Standard Model

Fermions Bosons

Quarks Leptons

1st 2nd 3rd 1st 2nd 3rd

u c t e µ τ γ g W± Z0 H0

d s b νe νµ ντ

Table 1: This table contains the particles known to the Standard Model, excluding the antiparticles. The
quarks and leptons are broken up into generations. The generations are distinct in their mass ranges. The
first generation is lighter than the second generation and the second lighter than the third. The first row
of quarks contains the up quark, the charm quark and the top quark. These quarks have charge + 2

3
and

the row below it contains the down quark, the strange quark and the bottom quark. These quarks have
charge −

1
3
. The first row for the lepton column are the charge leptons. They have charge -1, while the

row below it are the neutrinos which are neutral. The antifermions’ counterparts are not shown here, but
all of these fermions have antiparticle counterparts. The boson columns displays the photon, the gluon,
the positive and negative W bosons, the Z boson and the Higgs boson. The photon, gluon, Z boson, and
Higgs boson do not have antiparticle counterparts, however the W+ is the antiparticle of the W−.

1 Background

1.1 Standard Model and PDFs

The Standard Model (SM) is an effective theory that describes the interaction

of quarks and leptons with one another. There is a series of particles the

SM describes, each with their own set of properties. Quarks and leptons,

as described in Table (1), make up matter and interact via gauge bosons.

The gauge bosons are the photon, the W± and Z boson, and the gluons,

which mediate the electromagnetic force, the weak interaction, and the strong

interaction, respectively. The SM is built using these three main forces,

however it fails to describe gravity and is, consequently, an incomplete theory

for all interactions in the universe. Even though this theory doesn’t describe

gravity, gravity is a very weak interaction so that its effect on the quantum
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scale is negligible.

Each force has a corresponding charge which interacting particles must

have. The electromagnetic interaction acts only on electrically charged par-

ticles. The weak interaction interacts on all particles. The strong interaction

acts on particles that have color charge. The strong interaction is especially

important because it gives a description of how hadrons, like protons and

neutrons are made up of quarks.

The theory describing the quark and gluon interactions specifically is

quantum chromodynamics (QCD). This sector of the SM is important in

understanding the make up of hadrons since QCD dominates this bound

state. Knowing the interaction of the quarks and the gluons (called partons)

is not enough for a holistic understanding of hadrons. The wave function

associated with the partons is decoherent, meaning that properties like the

momentum of the partons aren’t well known. A probability description is

used to describe the partons making up a hadron. Parton distribution func-

tions (PDFs) provide a probability-based description of the partons and work

as a means of bridging interactions with hadrons to the more fundamental

interaction of partons. There is currently no analytic means of determining

PDFs. This is the importance of global fitting, like those found in the PDF

sets like the Alekhin-Blümlein-Moch PDF set (ABM12), CTEQ-Jefferson

Lab PDF set (CJ15), CTEQ-TEA PDF set (CT14), Neural Network PDF set

(NNPDF30), etc. These efforts attempt to constrain the free parameters in

models which provide a functional form for PDFs. Varying experiments with
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large momentum transfers like deep inelastic scattering (DIS) and hadron-

hadron collisions are very useful in adding constraints to these models. For

more information on PDFs see Sec. (1.4).

1.2 Perturbation Theory and the Standard Model

The Standard Model has been used to accurately predict observables. These

observables in the case of particle interactions in collider experiments are

differential cross sections, dσ. A cross section, σ can be thought of as the

probability of an interaction occurring. A cross section has units of area

and, in the classical case, is a real cross section. For example, consider the

case of a beam of light particles incident upon a hard spherical potential.

A calculation for this system would yield a cross section of πr2. Similar

calculations can also be done for all types of interactions.

Differential cross sections are especially useful in collider physics. Classi-

cally or even quantum mechanically, if a beam of light charged particles were

incident on a heavy charged particle, as in proton-electron scattering, the

cross section would be infinite. This is a consequence of the Coulomb force

having an infinite range since,implying that even at large distances the par-

ticles still interact. This infinity might seem troublesome, but information

can still be gained from analysing differential cross sections. If one instead

analysed the cross section of a set of particles scattered toward a differential

solid angle, dΩ, the result becomes finite. The differential cross section in

the frame of the heavy scattering center, calculated using either quantum
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Figure 1: The running of the coupling associated with QED. Notice as Q2 → 0 the coupling is α(0) ≈ 1
137

.

mechanics with a Coulomb potential or classical Coulomb scattering, is

dσ

dΩ
=

m2α2

4p4 sin4 θ
2

(1)

where θ is the scattering angle and m and p are the mass and initial mo-

mentum of the electron. The constant α is the fine structure constant and

is approximately 1
137 . The SM predicts higher order O(α3) terms in this

cross section. The result shown in Eq. (??) is actually an approximation

to the cross section predicted by quantum electrodynamics (QED). QED is

a relativistic quantum theory of charged particles and photons and it is a

part of the Standard Model. The higher order effects predicted by QED

become important at higher energies, and can be calculated using pertur-
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bation theory. A crucial requirement of perturbation theory for scattering

is that there must be some perturbatively small factor associated with the

interaction. The dimensionless quantity α is the perturbative factor for the

electromagnetic interaction described above. This factor is sufficiently small

for the usage of perturbation theory. Still there is an important fact ne-

glected in this argument. The α shown above is actually a function of the

momentum transfer, Q2. The parameter Q2 is defined as the negative of the

Minkoswki product of the momentum transfer of the virtual photon incident

on a charged particle. For our purpose, it is a measure of an energy char-

acterizing a scattering process. Fair usage of perturbation theory requires

that α(Q2) is small for a given Q2. Fortunately, for energy scales relevant to

modern collider energies (104 GeV) the physical fine structure remains small,

see Fig. (1).

The coupling in QCD, αs, for small Q2 is large i.e. αs(0) ≈ O(1). This

would seem to be a problem for using perturbation theory for QCD. However,

due to the properties associated with QCD (see Sec. (1.3)) the coupling isn’t

a monotonically increasing function in
√

Q2 as is the case for QED. Instead,

it decreases and asymptotically approaching zero (see Fig. (2)). When the

momentum transfer is near
√

Q2 = 90 GeV the constant is perturbatively

small, αs(90 GeV) ≈ 0.1185. This is quite useful because perturbation theory

can be used in QCD for energy ranges explored in modern collider experi-

ments.
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Figure 2: The running of the coupling for QCD.

1.3 Summary of Perturbative Quantum Chromodynam-

ics

The properties of the strong interaction, in comparison to the electromagnetic

interaction, are quite unfamiliar. There are more than just two charges in

QCD, in fact, there are a total of six color charges. The color charges are

red (r), green (g), blue (b), antired (r̄), antigreen (ḡ), and antiblue (b̄). The

quarks carry the color charge and their counterparts, the antiquarks possess

the anticolor charge. Gluons, the mediator of the strong interaction, also

have color-anticolor charge. The gluon is the gauge boson of QCD, just as

the photon is the gauge particle of QED. Photons are not electrically charged,

so the gluon having color charge results in different properties for QCD. An

important consequence of gluons having color charge is color confinement.
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This means that hadrons, bound states dominated by QCD, cannot be color

ionized. There is, again, no analogy in electromagnetism. An atoms, which

is a bound state dominated by electromagnetism (EM), can be electrically

ionized if it is given enough energy. Hadrons cannot be color ionized. This

means that all final states must be color neutral, sometimes called white.

Hadronisation is a direct consequence of this. A proton will create a jet of

other hadrons (the sort of hadrons are constrained by conservation laws),

but never will become a collection of disassociated partons. Equivalently,

free quarks or gluons can never be directly observed. This would seems to

imply that partons are strongly interacting in the final and initial state of a

process. A lack of free particles in the final and initial states would make the

calculation of cross sections very difficult, luckily partons are asymptotically

free. This means that the partons can be treated as free in these bound states,

only interacting strongly at higher length scales. Partons behaving freely on

short distance scales is imperative in perfmoingin perturbative calculations.1

1.4 Parton Model in Deep Inelastic Scattering

Proton structure can be resolved at sufficiently high energy. A description of

the form for the proton is given by structure functions. Structure functions,

1There are non-perturbative techniques that can be used for QCD calculation, most
notably lattice QCD. Such technique are powerful for predicting low-energy-regime prop-
erties of hadrons. Lattice QCD famously, approximated the rest mass of the proton, a
feat impossible for perturbative QCD. The downside of lattice QCD it that is numerically
intensive. The aforementioned rest mass prediction required months of calculations on a
super computer.
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Figure 3: The gluon binding quarks together can produce quark-antiquark pairs. When particles interact
with hadrons one must consider the quarks created from the gluon field. The bold line are the valence
quarks while the lines in the loop represent the sea quarks.

even at fairly low energies, indicate the proton is not a point particle like

the electron seems to be. In electron-proton DIS (ep → eX), the structure

functions enter the cross section2 as

dσ

dΩ
=

α2

4E2 sin4 θ
2

E ′

E
{(F 2

1 −
E ′ − E

2mp

F 2
2 ) cos

2 θ

2

−
E ′ − E

mp

(F1 + F2)
2 sin2 θ

2
}

(2)

E is the initial energy of the electron, E ′ is the final energy of the electron

(which is fixed for this cross section) and F1(x,Q2) and F2(x,Q2) are the

structure functions. If F1 = 1 and F2 = 0, this would correspond to a point

particle.

In DIS the collider energy is much greater than the mass of the proton.

The electron, acting as a probe, has enough energy to resolve the structure

of the proton. At the same time, the electron has enough energy to change

the proton into jet of other hadrons. The parton paradigm implies the con-

2In the frame of an initially at rest proton and in the limit of a massless electron.
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stituents carry some fraction of the momentum of the proton, ξ, or

pq = ξpP (3)

here pq is the momentum of the quark and pP the momentum of the proton.

The momenta of the partons aren’t easily observable due to the difference in

time-scales of the partons, 1
mp

, and time scale of the collider, 1√
Q2

.3 Since the

partons are “hidden” inside of the initial proton, the exact momenta of the

partons cannot be determined. However, a probability distribution can be

used. This probability density function will give the probability of interacting

with one of the inner partons carrying some momentum fraction between ξ

ad ξ + dξ. The probability is fi(ξ)dξ, where i denotes the particular species

of the parton. The function fi(ξ) is the Parton Distribution Function (PDF).

Of the six flavours of quarks that can make up the proton, the main flavours

are the up and down quarks. Naively, one would say that the proton is made

up of two up quarks and one down quark alone. This idea is simplified only

because it ignores the importance of the gluon which carry half around half

of the momentum of the proton. Since there is a chance for the gluon to

produce quark-antiquark pairs (as shown in Fig. (3)) the structure of the

proton is not so simple. Quarks originating from the gluon field are called

the sea quarks while the “naive quarks” are called the valence quarks. The

3Natural units are used here:

h̄ = c = ϵ0 = µ0 = 1
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probability for finding a particular species of quarks is given by the evaluation

of an integral of the PDF over a momentum fraction spanning from 0 to 1.

Due to the gluon creating the quark-antiquark pairs in equal amounts one

must subtract the antiquark PDFs to get to the appropriate number. So this

looks like

∫ 1

0

dξ(fu(ξ)− fū(ξ)) = 2

∫ 1

0

dξ(fd(ξ)− fd̄(ξ)) = 1

∫ 1

0

dξ(fs(ξ)− fs̄(ξ)) = 0

...

(4)

or more generally
∫ 1

0

dξ(fq(ξ)− fq̄(ξ)) = Nq (5)

where Nq is the number of quarks of flavour q.

Another constraint can be derived from the conservation of momentum.

First say that the momentum of the proton is the classical sum of all of the

momenta for each species of quark, then

∑

i

Nipi = pP

∑

i

∫ 1

0

dξfi(ξ)
pi
pP

= 1

∑

i

∫ 1

0

dξfi(ξ)ξ = 1

(6)
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where i denote quark, antiquark and gluon species. This is simply the con-

servation of momentum written in terms of the PDF of the quarks. These

are important conservation laws that are used in the determination of the

PDFs.

Now with these probability functions, in hand one can write the proton’s

cross section in terms of the partonic cross sections. This is

σ =
∑

i

∫ 1

0

dξfi(ξ)σi (7)

Each quark is assumed to be a free point particle inside of the proton, so we

can write a particular parton species’, i, interaction with an electron in DIS

as
d2σi

dΩdE ′
=

α2Q2
i

4E2 sin4 θ
2

(cos2
θ

2
+

Q2

2m2
q

sin2 θ

2
)
2mpx2

Q2
δ(ξ − x) (8)

letting Qi denote the charge of the quark and

Q2 = 2mq(E
′ − E)

The parameter x is often called the Bjorken variable and E is the energy of

the incident electron. Note the similarity of Eq. (8) to Eq. (2). Now Eq.

(7) and Eq. (8) imply that the cross section for the proton in DIS in terms

of the cross section of the partons are

dσ

dΩdE ′
=

∑

i

fi(x)
α2Q2

i

4E2 sin4 θ
2

(
2mpx2

Q2
cos2

θ

2
+

1

mp

sin2 θ

2
) (9)
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Figure 4: Experimental verification of the Bjorken scaling phenomenon. Notice that F2, one of the
structure functions associated with the proton, has very little dependence on Q2. Logarithmic dependence
arises from higher order QCD effects.

Using this gives insight onto the form of the structure function in Eq. (2).

The structure functions are

2xF1(x,Q
2) = F2(x,Q

2) = x
∑

i

Q2
i fi(x) (10)

This result after some analysis yields two important facts: Bjorken scaling

and the Callan-Gross relation. The Bjorken scaling states the structure func-

tions at leading order are independence of Q2. Bjorken scaling is a statement

of protons being made of point particles. Bjorken scaling was also seen ex-

perimentally as shown in Fig. (4). This independence is approximate and

has some small logarithm dependence that originates from QCD higher or-

der effects. The dependence on Q2 is determined by a set of PDF evolution
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Figure 5: Some of the QCD corrections used in the consideration of the Q-dependence of DIS. The
incoming photon is the virtual photon associated with the DIS process.

equations called the DGLAP equations. The second result, the Callan-Gross

relation, is

F2(x,Q
2) = 2xF1(x,Q

2) (11)

which implies that the spin statistic of the quark are the same as that of the

proton. So the quarks are spin-12 Dirac fermions.

Knowing Eq. (9) isn’t enough. Beside this being a leading order calcula-

tion it doesn’t include the possibility for the initial state partons to scatter

inelastically into other quarks and gluons. This would require higher order

QCD calculations, as mentioned previously, which give the DGLAP evolution

equations and splitting functions. It involves the scattered quark emitting

a gluon or absorbing a gluon, and the gluons changing into quark-antiquark

pairs. Some of the QCD diagrams are shown in Fig. (5). This result, in con-

junction with a fragmentation function 4 predict phenomena seen in collider

experiments.

DIS is a strong tool for understanding the constraints that one can imple-

4Fragmentation function are the opposite of PDF’s. PDF’s relates the quark’s cross
section to the proton’s, while the fragmentation function relate the scattered produces
quark and gluons to final state hadrons.
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ment on PDFs. The up and down quark PDFs can be understood well, due

to their large presence in targets (e.g. proton and nuclei). DIS experiments

are important data sets to help in the determination of PDFs. Neutrino

beam are also utilized in experiments. The neutrino-nuclear experiments are

also especially useful in determination of the strange PDF. However, DIS has

some limitation. The beams used are typically a beam of leptons scattering

with some nuclear target. Since leptons don’t strongly interact with gluons,

the gluon PDFs must be determined with a different process. The nuclear

target experiments also require off-shell nuclear correction since the proton

and neutrons are in a bound state and do not assume their usual masses.

Secondly, the scatter quark must propagate through a nuclear medium, re-

sulting in difficult correction terms. Hadron-Hadron experiments conducted

at accelerators like the LHC and at the Tevatron are useful tool in exploring

other forms of constraints on PDFs with no issues associated with nuclear

effects. The experiments also have the benefit of higher energies.

1.5 Hadron-Hadron with Drell-Yan or Vector Boson

Interactions

Hadron-hadron collisions are often able to get to much higher center-of-mass

energies than DIS collisions.5 The collision between two hadrons involve an

extra degree of freedom due to uncertainty in the energy of the interacting

5Higher mass charged particles do not radiate energy as much as lower mass particles,
so an electron cannot easily be accelerated to high energies, unlike a proton.
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partons. This results in a requirement for three variables, unlike the two in

DIS e.g. E ′ and Ω or one in elastic scattering e.g Ω. One set of variables

that could be used is the momentum transfer Q2, the momentum fraction

of the first interacting parton x1, and the momentum fraction of the parton

from the second hadron x2 (it doesn’t matter which hadron is designated as

“first”). However, since the momentum fractions aren’t observable they need

to be related to a set of experimentally well-measured quantities. These are

y =
1

2
ln

x1

x2

M2 = x1x2s

(12)

where s is one of the Mandelstam variable associated with the total center

of mass energy of a collision. It, formally, is the Minkowski squared of the

sum of the four-momenta for the incoming hadrons.

s = (p1 + p2)
2 (13)

The variable M is the invariant mass of the process and y is the rapidity.

Rapidity can be physically understood as a Lorentz-invariant formulation of

angles. Rapidity is defined as

y =
1

2
ln(

E + pz
E − pz

) (14)
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Figure 6: This shows the spatial dependence of the pseudorapity η. Notice, that going forward down the
beam line indicated θ = 0 and η = inf, while backwards along the beam line is θ = π and η = − inf.
Directly perpendicular to the beam is θ = π

2
and η = 0

where pz is the longitudinal momentum. This formulation is convenient since

the change in rapidity is invariant under a Lorentz-transform (∆y′ = ∆y).

The invariance of the difference in momentum allows for calculations to be

performed in different reference frame but retain the same bin size. In the

m → 0 limit, often the rapidity y is replaced with the pseudorapidity, η,

which in terms of θ, is

η ≡ − ln(tan
θ

2
) (15)

See Fig. (6). The inverse transforms for Eq. (12) are

x1 =
M√
s
ey

x2 =
M√
s
e−y

(16)

Hadron-hadron processes are especially important since they are able to ex-

plore extremely high energies. For PDF constraints this allows for better fit

at much lower x values, considering Eq. (16).

The Drell-Yan process is one that includes the interaction of a neutral
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current as the mediator of a hadron-hadron interaction. This interaction

could be an Z boson or a photon as seen in Fig. (7). Drell-yan processes are

important for PDFs since they are sensitive to exotic distribution like the

strange PDF. Weak vector boson production with W± is similarly helpful

just as in the case for Drell-Yan processes. By examining data for these

processes, one can find constraints on PDFs in terms of product of PDFs.

A formulation can be investigated for another observable in weak vector

boson interactions. If a W− boson is inclusively selected in an experiment

from lepton distributions (see Fig. (7)), the cross section that has PDFs

dependent is6

dσ

dy
= (cos2 θcū(x1)d(x2) + sin2 θcū(x1)s(x2)

+ cos2 θcc̄(x1)s(x2) + sin2 θcc(x1)d(x2) + ...+ (switch1 ↔ 2))
dσ̂

dy

(17)

where θc is the Cabbibo angle and σ̂ denotes the partonic cross section. This

angle correspond to a 2×2 rotation matrix relating the interaction of u and c

quarks to d and s. A more general form of the Cabbibo matrix is the Cabbibo-

Kobayashi-Maskawa (CKM) matrix which contains the Cabbibo 2× 2 in the

6This cross section is written in terms of the first and second generation quarks. These
are the lightest quarks and contribute the most to these interactions.
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Figure 7: These are the Feynman diagrams representing the The Drell-Yan process at the LHC and the
vector boson process with W+. Drell-Yan is on the left and W production is on the right. The quarks
shown in the figure can originate from either proton 1 or proton 2. There is another similar diagram
including W− production.

upper left corner. The CKM matrix is approximately

Vqq′ ≈

⎛

⎜

⎜

⎜

⎜

⎝

1 .2 0

.2 1 .2

0 .2 1

⎞

⎟

⎟

⎟

⎟

⎠

(18)

where each row corresponds to the u, c, t quarks, respectively and each

column corresponds to the d, s, b quarks, respectively. This matrix implies

that some quark products are suppressed. At particularly low momentum

fractions and high Q2 the sea and the valence quark are comparable with one

another, so the CKM factor can increase the sea quark contributions enough

to help gain more information about exotic quark distributions. Observables,

including the differential cross section for W+, are sensitive to variations

in the more exotic quark especially at higher energies,
√
s and at higher

rapidities, y.
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Figure 8: The original quarks distribution as described by the unchanged CJ15 PDF set. This is at a
small momentum transfer of Q2 = 1.69 GeV2.

1.6 The CTEQ-Jefferson Lab (CJ15) PDF set

2 Global Fitting

2.1 Parametrization

From DIS, and hadron-hadron collision, much has already been learned about

the larger quark distributions of the proton. The up quark, the down quark,

the antiup, the antidown and the gluon distribution are fairly well con-

strained. The heavier quark PDFs are less known. Since the exotic quarks

have heavier masses and have no valence inside of the proton, these PDFs

are smaller at moderate energies and rapidities in comparison to the up and

down PDFs. Gluons more often produce sea quarks of lower masses like the

23



Figure 9: The original quarks distribution as described by the unchanged CJ15 PDF set.This is at a small
momentum transfer of Q2 = 1000 GeV2.

u, ū, d and d̄ quarks, but the higher mass quark are less likely. When the

size of the PDFs are small it becomes difficult to discern the variation in

quark PDFs from the theoretical and experimental uncertainty associated

with constraining the PDFs from data. For this reason, one must search for

data that is sensitive to exotic PDFs.

The lightest exotic quark is the strange quarks so, naturally, the PDF of

interest to be constrained is the strange PDF. One of the assumption asso-

ciated with the strange distribution is that the strange and the antistrange

PDF are the same. This is an assumption originating from the matter-

antimatter symmetry of the Standard Model and with the fact that gluons

producing strange and antistrange quarks in equal amounts. This means the

when fitting the strange PDF that the function that is being constrained is
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in fact
s(x) + s̄(x)

2

Another assumption is that the strange quark behaves similarly to the other

sea quarks. This assumption is parametrized mathematically as

s(x) + s̄(x)

2
= κ

(ū(x) + d̄(x))

2
(19)

A more telling parametrization used in this analysis includes x-dependence,

s(x) + s̄(x)

2
= κxκ1(1− x)κ2

(ū(x) + d̄(x))

2
(20)

This parametrization is a simple and more general form that shifts the func-

tion and changes the general shape.

The starting point for the fitting done here is the CJ15 PDF set [1].

This PDF set used data originating from several different types of DIS and

hadron collider experiment to fit free parameters in a PDF model. This

PDF set used data sets from experiment HERA, JLAB, LHC, Tevatron etc.

A visual representation of the CJ15 PDFs are shown in Fig. (8) and (9).

The CJ15 PDF set avoided the fitting of data that involved heavy nuclei.

This is due to the fact that a heavy nucleus contains bound protons and

neutron instead of free nucleons. This implies that the nucleons are off-

shell. When analysing processes involving a nucleus one must also consider

the propagation of partons through a nuclear medium. These effects are not
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completely understood and so there may be some discrepancy between PDFs

of a free proton and these nuclear PDFs.

2.2 Chi-squared minimization

The global fitting program used here utilizes a χ2 minimization technique to

vary parameter associated the CJ15 parameters, including the addition new

x-dependent variables for the strange quark PDF. The minimization algo-

rithm reads in many data sets including the LHCb and CMS data sets. The

global fitting program varied the parameter to explore a multidimensional

parameter space, to find a point that minimizes the χ2

χ2 =
N
∑

i=1

(Oi − Ei)2

σ2
i

(21)

where O is the experimental observable and E is the theoretically expected

value. The uncertainty, σ, is the error in the observed measurement. These

observed and theoretical quantities are observables that are associated with a

particular processes. When invoking calculations for, say the differential cross

section dσ
dy
, the variation is done on several parameters, minimizing the value

of χ2. Inside of the global fitting algorithm, there are LO calculation done

for the lepton rapidity observable. The NLO calculation can be done with a

simple K factor that originates from a Monte Carlo process calculator in the

same region of kinematic space as the data used. The Monte Carlo Femtobarn

process Measurement (MCFM) program is used for the calculation of K
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Figure 10: Plus distribution sensitivity. The sensitivity plot is made by doubling and halving the κ value
in the normal CJ15 parametrization.

factors. K factors for a rapidity distribution are

K(y) =
dσNLO

dy

dσLO

dy

(22)

By implementing a rapidity dependent K factor important theoretical NLO

calculations can be approximated. Without this factor the theoretical value

would unduly deviate from the observed value by 10%. This factor is espe-

cially important since the global fitting program might change a free param-

eter to compensate for the 10%, resulting in an unphysical result.
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Figure 11: Minus distribution sensitivity. The sensitivity plot is made by doubling and halving the κ value
in the normal CJ15 parametrization.

Figure 12: Lasy distribution sensitivity. The sensitivity plot is made by doubling and halving the κ value
in the normal CJ15 parametrization.
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Figure 13: Lasy CMS distribution sensitivity. The sensitivity plot is made by doubling and halving the κ
value in the normal CJ15 parametrization.

2.3 Additional Data sets

The new data sets which were added to the original CJ15 sets are from

the CMS [2] and LHCb [3] detectors at the LHC. The original CJ15 data

sets include measurements from the Tevatron, the ATLAS detector at LHC,

SLAC, among others. All of these measurement along with the new data

were included in the global fits.

2.3.1 CMS

The CMS (Compact Muon Solenoid) detector is an apparatus armed with

several layers of detecting materials. These include the silicon tracker, the

pixel tracker, the electromagnetic calorimeter, and the hadronic calorimeter.
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These detecting elements with particle flow algorithms allow the CMS de-

tector to understand what sort of particles are created from proton-proton

collisions.

The CMS data used here includes data from rapidity ranging from -

2.4 < η < 2.4 with a center-of-mass energy
√
s = 7 TeV. The observable

tested here is the lepton asymmetry. An important cut made to the data is

the requirement of the transverse momentum of the detected lepton being

greater than 25 GeV, this cut is incorporated in the theoretical calculation as

well. Lepton asymmetry taken experimentally is calculated with the number

of particles in a particular rapidity bin ∆y. The number of positively charged

leptons is denoted by N+ and the negatively charged leptons is denoted by

N−. So the lepton asymmetry with respect to rapidity is

Al(y) =
N+(y)−N−(y)

N+(y) +N−(y)
(23)

Here the rapidity y, is the average of the bin width chosen. The data used

is shown in Table (2). The theoretical lepton asymmetry is calculate as

Al =
dσ(W+ → l+ν)/dy − dσ(W− → l−ν̄)/dy

dσ(W+ → l+ν)/dy + dσ(W− → l−ν̄)/dy
(24)

The data from the CMS detector is shown in table (2).
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y Al(Theory) ± error Al(Exp.) ± error χ2

0.1000 0.1512 0.0007 0.1521 0.0023 -0.15
0.3000 0.1538 0.0007 0.1538 0.0023 0.00
0.5000 0.1594 0.0007 0.1603 0.0024 -0.15
0.7000 0.1679 0.0007 0.1706 0.0024 -1.28
0.9000 0.1792 0.0007 0.1788 0.0026 0.02
1.1000 0.1929 0.0007 0.2007 0.0028 -7.75
1.3000 0.2086 0.0008 0.2113 0.0027 -1.01
1.5000 0.2251 0.0008 0.2217 0.0027 1.61
1.7250 0.2430 0.0009 0.2461 0.0028 -1.22
1.9750 0.2583 0.0009 0.2616 0.0028 -1.43
2.2500 0.2644 0.0008 0.2649 0.0034 -0.02

Table 2: Data with theory output from global fitting program. Data from [2] is list in terms of rapidity y
which is the same a pseudorapidity in the relativistic limit.

2.3.2 LHCB

The LHCb detector differs from the other detectors in the LHC series. It is

designed to measure the relatively short-lived bottom hadron. To measure

these short-lived particles the detector must measure very close to the beam

line, since those hadrons have the most energy and time-dilation lengthen the

tracks in the detector. This detector measures in the high forward rapidity,

2.0 < η < 4.5. This new data is important to PDF calculations since one can

now explore a lower momentum fraction. The higher rapidity range along

with 8 TeV energies leads to a lower bound on the momentum fraction. The

theoretical bound on the LHCb data, using Eq. (12), would be

x =
MW√

s
e−η (25)
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η dσ
dη
(Theory) ± error dσ

dη
(Exp.) ± error χ2

2.3750 801.6906 3.3966 833.6000 12.6870 -6.33
2.6250 722.2701 2.9997 728.0000 10.6730 -0.29
2.8750 610.0480 2.5137 613.2000 9.2090 -0.12
3.1250 477.1161 2.0024 478.0000 7.4730 -0.01
3.3750 342.1199 1.5357 337.6000 5.4990 0.68
3.7500 171.1682 0.9767 172.8000 3.1620 -0.27
4.2500 43.2217 0.4256 46.0000 1.6610 -2.80

Table 3: Positive rapidity distribution from LHCb detector [3].

or

x ≈
90 GeV

8000 GeV
e−4.5

x ≈ 10−4

(26)

This gives a uniquely low x, not typically explorable by other detectors.

The new data sets included in this analysis are muon plus and minus

rapidity distribution from LHCb [3]. The data sets are shown in tables (3),

(4), and (5). The first data point (y = 2.125) in this analysis is removed,

due to lack of theoretical agreement. Removal of this point from the data set

leads to a significant lowering of the χ2 by around 40 points. An important

cut made to the data is the requirement of the transverse momentum of the

detected lepton being greater than 25 GeV, this cut is incorporated in the

theoretical calculation as well.
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η dσ
dη
(Theory) ± error dσ

dη
(Exp.) ± error χ2

2.3750 467.0903 2.0338 479.2000 7.4300 -2.66
2.6250 438.3945 1.8680 442.4000 6.6930 -0.36
2.8750 405.4146 1.7156 409.6000 6.4620 -0.42
3.1250 366.7012 1.5672 370.0000 5.9460 -0.31
3.3750 320.5595 1.4057 319.6000 4.9800 0.04
3.7500 237.5447 1.1140 238.6000 3.8000 -0.08
4.2500 119.2534 0.6710 120.0000 3.6330 -0.04

Table 4: Minus rapidity distribution from LHCb detector [3].

η Al(Theory) ± error Al(Exp.) ± error χ2

2.3750 0.2637 0.0008 0.2702 0.0058 -1.25
2.6250 0.2446 0.0008 0.2439 0.0049 0.02
2.8750 0.2015 0.0008 0.1996 0.0049 0.15
3.1250 0.1309 0.0010 0.1274 0.0053 0.42
3.3750 0.0325 0.0014 0.0275 0.0060 0.69
3.7500 -0.1624 0.0024 -0.1599 0.0104 -0.06
4.2500 -0.4680 0.0039 -0.4463 0.0187 -1.35

Table 5: This is the list of data associated with the lepton asymmetry observable from the LHCb [3].

Figure 14: Comparison between the original CJ15 strange distribution and the new distribution from the
added LHCb and CMS data.
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2.4 Results

The CJ15 original strange quark parametrization is

s(x) = κ
ū(x) + d̄(x)

2
(27)

This is the standard strange parametrization where the strange quark is

assumed to be proportional to the antiup and antidown sa quarks. Originally

in the previous CJ15 fit the value of κ was fixed to 0.4, which is supported

from the CCFR DIS measurement. This parameter was not fitted since there

lacked data sensitive to the strange quark distribution. The additional data

sets can be added to the global fit data sets and new parametrization can be

fitted. The data sets’ observable’s sensitivity to variation in the strange PDF

is shown in figures (10), (12), (11), and (13). The variation in the observable

is, in some cases, larger than the experimental error. This is an indication

of a large enough sensitivity to variation in the strange quarks. So these are

indeed sensitive observables to explore constraint for the strange quark. The

parametrization used in this analysis is

s(x) = κ
(ū(x) + d̄(x))

2
(1− x)κ1xκ2 (28)

This new parametrization of the strange quark is more general than the

previous one in Eq. (27). With addition of κ1 and κ2 the strange distribution

can be shifted towards low x or high x. Fitting κ, κ1, and κ2 and free all
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Figure 15: The leading order O(αsαw) partonic Feynman diagram for W +c in the final state at the LHC.
Similar diagrams can be constructed for the antistrange quark in the initial state.

the other CJ15 parameters lead to a new strange distribution shown in Fig.

(14). The parameters are fitted to

κ = 0.33± 0.038913

κ1 = 8.3± 3.7056

κ2 = −0.097± 0.10204

(29)

Overall, the distribution is pulled down, and this is primarily due to the CMS

data (see Fig. (14)). Still the errors on the new distribution are too large to

give a definitive answer. The parameter κ1 may indicate some x dependence

but more research and more data is required to confirm this result.

2.5 Future works

In order to gain constraints on the the strange quark PDF, one must analyse

more data sensitive to the strange quarks distribution. Analysis of vector

boson production at the LHC with high rapidity and high center or mass en-
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ergy would be a possible next step in determining constraints. With 13 TeV

data being collected, the strange quark and other PDFs can be constrained

in a small x region. More accurate NNLO calculations can also be imple-

mented inside the global fitting program to increase the accuracy of certain

calculations.

Another process one could test is the W + c in the final state at the LHC.

This process is shown in Fig. (15). This process favours a strange quark in

the initial state due to the CKM matrix suppressing down quarks in the final

state. A similar process prior toW+c at LHC was measured at neutrino-iron

nucleus experiments. Such experiments involved nuclei, so constraints would

be determined for nuclear PDFs instead of for free nucleons. Usage of W + c

provides an opportunity to fit data sensitive to the strange quark without

worrisome nuclear effects. Still a process like this is numerically intensive due

to there being three particle in the final state (after the W bosons decay).

This requires an integration over three phase spaces, one for each particle.

2.6 Conclusion

With the addition of data from the CMS [2] and LCHb [3] detectors there is

support for lowering κ from 0.4 to around 0.33. The x-dependent parametriza-

tion involving (1 − x)κ1 is supported by a non-zero value for κ1. The errors

are large so more research should be done to understand this parametrization

of the strange PDF. Implementation of the xκ2 factor in the parametrization

of the strange PDF is not well supported since κ2 remained near zero. The
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next step in determining constraints for the strange PDF could be found in

including W + c data from the LHC in the global fit.
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