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ABSTRACT

The Standard Model (SM) of particle physics is a very successful yet incomplete theory describing

fundamental particles and their interactions. Attempts to solve similar theoretical problems have

historically involved the discovery of new particles, motivating the search for particles that could

solve the hierarchy problem present in particle physics. Supersymmetry (SUSY) theories posit the

existence of partners to the SM particles that differ in spin and are on the order of the W and Z boson

masses; the existence of such particles has the potential to solve several of the problems within the

SM. More recent theories such as neutral naturalness, i.e. the existence of supersymmetric partners

to the SM particles that are not charged under SM QCD, attempt to explain the lack of evidence

for SUSY particles at the LHC while still solving problems with the SM. Scalar long-lived particles

are predicted by such theories, and are possible to observe using the Compact Muon Solenoid

Experiment (CMS) at CERN. Here we present efforts to aid a search for such particles using the

novel Regions of Interest (ROI) mechanism. The principle of the ROI technique is to identify

displaced vertices directly, rather than identifying displaced objects (i.e. electrons, jets). This

is accomplished by identifying displaced pairs of tracks within the CMS tracker, fitting them to a

vertex, and forming an artificial region around the vertex. This identification of displaced vertices is

beneficial as it allows for the analysis of complex final states, such as the τ of this analysis, without

the need to actually reconstruct these final states as physics objects. This ultimately allows for

stringent limits to be set on branching ratios to previously ignored final states.
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CHAPTER 1

INTRODUCTION

The Standard Model of particle physics (SM) is an extremely successful theory of fundamental

particles and their interactions. Despite this, there are phenomena which the SM fails to explain;

notably, neutrino masses/oscillations and the existence of dark matter [1]. In addition, particle

physics as a whole suffers from a hierarchy problem. In theories where the Higgs mass can be

calculated, its value is dependent on quantum corrections which could force its value to be on the

order of the Planck scale – the scale at which the forces, including gravity, are unified. However, the

observed mass of the Higgs, ∼ 125 GeV, is nowhere near the 1019 GeV Planck scale. In order to get

the calculated mass to match the observed mass, an enormous amount of fine-tuning of parameters

is required. This fine-tuning is considered by physicists to be “unnatural”, and therefore this issue

is also commonly expressed as the naturalness problem.

One potential solution is to posit the existence of new particles, which will in some way “can-

cel out” the diverging quantum correction terms in calculations of the Higgs mass. The most

popular class of such solutions is supersymmetry (SUSY), a group of theories which posits the

existence of “superpartners” to the SM particles which are identical in all aspects except for spin.

That is, spin-1
2
particles have spin-0 superpartners, and spin-1 particles have spin-1

2
superpartners,

etc. Clearly, the symmetry cannot be exact, or else superpartners with identical mass to their

SM counterparts would have already been observed. In most SUSY theories, the masses of the

superpartners are instead on the order of the masses of the W and Z bosons [2]. However, the

lowest mass SUSY particles should have been observed at the LHC and have not been, an issue

which has been called little hierarchy. Theories of neutral naturalness, which posit the existence of

a new symmetry relating the SM quarks to partners that are colorless and thus neutral to the SM

QCD, resolve the little hierarchy problem by providing a physics excuse as to why the lowest mass

SUSY particles have not yet been observed at the LHC.

Such theories would indeed be able to explain the observed mass of the Higgs in a more natu-

ral way, but it is not clear how the particles of such theories would be detected. One possibility
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is that this connection between the Higgs and these hidden particles would be manifest in exotic

decays of the Higgs – particularly in decays of the Higgs to neutral Long-Lived Particles (LLPs)

which decay back to SM particles.

Many past searches have focused on final states containing jets; one recent example comes from

ATLAS [3]. In this study, decays of the form Φ → SS were considered, where Φ is a neutral boson

(that could be the Higgs) with mass from 125-1000 GeV, and S is a long-lived particle with mass

between 5 GeV and 400 GeV. The analysis searched for two jets with no associated activity in the

tracker, and a high ratio of energy deposited in HCAL to energy deposited in ECAL, that appear

narrower than prompt (i.e. not displaced) jets when reconstructed. Strong limits were able to be

set on branching ratios of previously unstudied combinations of Φ and S masses.

Production Mode Cross Section (pb)

ggH 48.6 ± 2.8

VBF 3.78 ± 0.08

WH 1.37 ± 0.03

ZH 0.88 ± 0.03

Table 1.1: Various productions modes of the Higgs, listed with their associated cross section at the
LHC operating at

√
s = 13 TeV. Data taken from [4].

Of particular relevance to this analysis is another relatively recent result which studied events con-

taining a Higgs produced in conjunction with a Z boson that then decayed to a pair of leptons

[5]. This dilepton final state of the Z boson allowed for very clean triggering, as the only major

contribution to the background came from the Drell-Yan process1. After triggering, displaced jets,

i.e. jets with no tracks, were identified according to several tagging variables. The number of

displaced jets associated with each event was then used to distinguish signal from background.

This ZH analysis was able to set the exclusion limit on the branching ratio of the Higgs to LLP

to b and d-quark final states below 1, but the tau final state was not constrained at all due to its

complicated decay modes/reconstruction.

As mentioned, the triggering for a Higgs produced in association with a Z boson (ZH) is very

clean thanks to the dilepton final state, but the cross section to produce this Higgs/Z pair is ex-

1A quark/antiquark annihilate and form a photon/Z boson which then decays to a lepton/antilepton pair.
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tremely small. On the other hand, the cross section to produce a Higgs through gluon gluon fusion

(ggH) is comparatively very large. Table 1.1 displays the relevant values of these cross sections at

the LHC. In the case of the ggH production mode, the trigger strategy becomes much less straight-

forward. This analysis focuses on the often ignored τ final state, so that the leptonic decay of the

τ to a soft muon can be exploited and the B Parking High Level Trigger can be used. Additionally,

rather than using displaced jet multiplicity to distinguish signal from background, this analysis

uses the novel Regions of Interest (ROI) mechanism.

The Large Hadron Collider (LHC), the Compact Muon Solenoid (CMS) experiment, detector trig-

gering, and data parking are described in the next chapter. In Chapter 3, the signal process and

relevant background processes are discussed more thoroughly, and technical details about the data

used are provided. Chapter 4 contains a brief description of the machine learning framework used

in this analysis. Chapter 5 describes the ROI mechanism and the parameters of the ML model.

Chapter 6 presents results of the performance of the ML model and relates them back to the un-

derlying physics. Finally, Chapter 7 contains a discussion of the ROI technique and its potential

applications to other physics processes.
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CHAPTER 2

THE CMS EXPERIMENT

The LHC is a superconducting pp accelerator and collider with a circumference of 27 km and

instantaneous luminosity of L ∼ 1034 cm−2 s−1. Each proton beam has an energy of slightly less

than 7 TeV, which means collisions occur with a total center-of-mass energy of
√
s = 13 TeV.

Alternating electric fields are used to accelerate bunches of protons, which are then directed by

magnetic fields to collide at multiple locations around the LHC. CMS is located at one such point;

it consists of several layers of detectors embedded within a superconducting solenoid that produces

a magnetic field of ∼ 4 T, as well as of muon detection chambers located outside of the solenoid.

The detector nearest to the collision point is the silicon tracker, which captures the tracks of charged

particles in order to provide precise measurements of momentum. The electromagnetic calorimeter

(ECAL) and the hadronic calorimeter (HCAL) are the next two detectors; both are primarily used

to measure energy, with the ECAL responsible for electrons/photons and the HCAL responsible for

hadrons. HCAL is particularly important, as it is used for the (indirect) detection of neutrinos as

well as potentially new physics by identification of missing transverse energy from jets. Finally, the

muon detection system is used in combination with the tracker for precise measurements of muon

momentum. Figure 2.1 depicts a summary of the CMS particle detection methods, along with the

scale of the experiment. A full description of CMS can be found in [6].

2.1 CMS Coordinate System

The origin of the CMS coordinate system is placed at the collision point of the protons inside the

experiment. Figure 2.2 depicts the coordinate system; importantly, the z-axis is taken along the

beam line. As usual, the azimuthal angle φ is taken as the angle from the x-axis in the xy-plane

and the polar angle θ is measured from the z-axis. Often the coordinates r and η are used; r is

the radial distance in the xy-plane and η, the pseudorapidity, is defined as η = − ln tan (θ/2). η is

useful because differences in η are Lorentz invariant under boosts along the beam axis.
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Figure 2.1: A schematic of a slice of CMS, showing the paths of various types of particles through
the detector, taken from [7].

Figure 2.2: A depiction of the coordinate system used in CMS, where the z-axis is taken along the
beam line and the x-axis is radially inward towards the center of the collider.
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2.2 Triggering at CMS

The LHC collides proton bunches at a rate of up to 40 MHz, but CMS only stores roughly 1 kHz

of physics events. This is because many of the events are uninteresting as they are well understood

according to the SM, and because it would be nearly impossible to produce the computational

resources necessary to store all the events. CMS therefore uses triggers to quickly decide which

events are interesting and should be stored, and which should be discarded. The first trigger is the

Level 1 (L1) trigger, which takes advantage of muon chamber and calorimeter information in order

to reduce the output rate to a maximum of 100 kHz. The L1 trigger is hardware-based, and so

the output is limited by hardware capabilities. The next trigger is the software-based High Level

Trigger (HLT), which starts from the L1 candidate and combines it with tracking data to further

select events. For example, the presence of/lack of tracks can be used to identify energy clusters in

ECAL that passed the L1 trigger as belonging to electrons/photons respectively, and the data can

then be passed through the HLT or discarded depending on the particular situation. After passing

the HLT, events are stored for prompt reconstruction, which reduces the rate of collection to 1 kHz.

2.3 Data Parking

Data parking refers to the practice of selecting events at the HLT, skipping prompt reconstruction,

and immediately moving them to tape storage, therefore “parking” the data. These events can then

remain on tape until there are sufficient available computing resources to reconstruct them. This

practice is useful because it allows for more than the standard 1 kHz of physics events (as described

in the prior section) to be recorded, which potentially allows for the detection of interesting events

which would otherwise have been discarded.

2.4 B Parking

B parking specifically refers to the 2018 collection of over 10 billion events containing a pair of B

hadrons. This dataset was triggered by requiring a soft and displaced muon originating from the

decay of a B hadron, which means that no requirements were placed on the other B in the pair.

A main motivation for B parking was to collect an adequate sample of B0 → K∗e+e−, in order to

compare the branching fractions of B0 → K∗e+e− and B0 → K∗µ+µ−, and to therefore test lepton

universality. However, as will be elaborated on in the following section, this B parking dataset is

also appropriate for our analysis, because of the selection involving the soft muon final state with

a moderate displacement from the primary vertex.
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CHAPTER 3

SIGNAL AND BACKGROUND

As mentioned in the introduction, the process of interest to this analysis is the decay of a Higgs

produced through gluon-gluon fusion to two scalar long-lived particles, which each then decay

to a τ τ̄ pair (shown in Figure 3.1). The tau final state has frequently been ignored in previous

Figure 3.1: A cartoon Feynman diagram of ggH → SS → ττ τ̄ τ̄ .

analyses due to its complicated nature. In particular, the tau itself can decay both leptonically and

hadronically (see Figure 3.2), which makes a triggering relatively unclear, especially in comparison

to the clean dilepton final state of a Z boson.

3.1 B Parking Trigger Efficiency

For our purposes, the leptonic decay is actually a benefit, as it includes a decay to muons with

∼ 17% probability. Such muons have low pT and are displaced from the primary vertex by a non-

neglible amount, which conveniently matches the criteria of the B parking HLT. The B parking

HLT thus has a relatively high trigger efficiency at most of the mass points and decay lengths used

in this analysis [8]. However, because of the selection criteria requiring a good measurement of
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µ−ν̄µντ (leptonic)

17%

e−ν̄eντ (leptonic)

18% π−ντ

11%

π−π0ντ

25%

π−2π0ντ

9%

π−π−π+ντ

9%

Other

11%

Figure 3.2: Figure displaying the decay modes of the τ and their rounded branching fraction, based
on data from the PDG in [4].

impact parameter (which is a measure of displacement from the primary vertex), decay within the

tracker is crucial for events passing the trigger. Signal points with cτ = 1000 mm fail to leave a

track within the tracker region, resulting in a lack of impact parameter information and therefore

a failure to pass the trigger. Signal points with cτ = 1 mm display a dependence on mass, which is

due to the fact that a lower mass particle will be boosted more on average, as shown in Figure 3.3.

This means that despite the decay length being less than the distance to the tracker, many of

these events are able to make it to the tracker and decay there, providing an impact parameter

measurement and allowing them to pass the trigger.

3.2 Background

Use of the B parking trigger, though convenient, is not without its drawbacks. Because the trigger

requirements are relatively loose, the data is populated by background events. The biggest con-

tribution comes from QCD, as many heavy flavor (loosely, containing a b quark/antiquark) final

states (B-mesons) with long lifetimes are produced. tt̄+jets (TTJets) also produce many B parti-

cles, although TTJets are produced with a lower cross-section. Other processes contribute much

less to the background, and thus QCD and TTJets are the only background processes used in the

ML training for this work.
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Figure 3.3: Histogram depicting the distribution of scalar transverse momentum pT at various
masses, taken from [8].

3.3 Signal

Table 3.1 lists the masses and lifetimes of the LLP studied. The cross section used in the Monte

Carlo generation of the signal samples is 4.414 pb [8]. Table 3.2 lists the B Parking Trigger samples

used in the analysis, as well as the HLT trigger path.

Mass (GeV) cτ (mm)

7 10

15 10, 100, 1000

40 100

55 100

Table 3.1: Mass and lifetime of the scalar LLP used to generate signal samples.

Data Sample Trigger

ParkingBPH*-Run2018A HLT Mu9 IP6 part*

ParkingBPH*-Run2018B HLT Mu9 IP6 part*

ParkingBPH*-Run2018C HLT Mu12 IP6 part*

ParkingBPH*-Run2018D HLT Mu12 IP6 part*

Table 3.2: Table displaying technical details of the B Parking data and the HLT trigger paths used
in the analysis, as stated in [8].
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CHAPTER 4

MACHINE LEARNING

The use of machine learning in this analysis is based on the Deep Sets framework described in

[9]; more specifically, the ROI mechanism (see Chapter 5) is an adaptation of the “particle flow

networks” described in [10]. In general, the use of ML in analyzing data from colliders is complicated

due to the fact that the potential number of inputs to a ML model is not fixed, which is troublesome

because many common ML techniques require a fixed length vector as input for training. In physics

analyses, we rely on observables (i.e. transverse momentum, multiplicity, mass etc.) which are

functions of a non-fixed number of particles in order to help us understand the physics underlying

the observations. This means that if we want to use experimental data to calculate some observable,

we need to have a function that is general enough to work with a variable number of inputs.

Additionally, it is clear that there is no physical reason why the order of the inputs should matter,

so the function in question must also be invariant under permutation of the input particles. This

makes the application of ML to the calculation of an observable less than straightforward. However,

as is described more thoroughly in [10], this can be accomplished through the decomposition of the

observable into a function of a summation of some representation of particles.

4.1 Observable Decomposition

More specifically, as in [10], we can write that an observable O which is a function of M particles

pi can be approximated as

O({p1, p2, ..., pM}) = F

�

M
�

i=1

Φ(pi)

�

, (4.1)

where Φ is a function that maps a particle to a representation in latent space 1, and F is a function

that takes the sum of the latent space representations and determines the value of the observable.

In this case, a particle can be thought of a vector containing some finite number of features, which

could be fundamental properties such as charge or spin, as well as kinematic properties such as pT

or position. This decomposition can be visualized in Figure 4.1a, taken from [10]. While this is

1A space in which the distance between objects is determined by their similarity, i.e. nearer is more similar or
vice versa. These spaces are often lower-dimensional than the space from which the data points originate, which
generally makes the problem appropriate for machine learning.
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(a) Figure that represents the decomposition of a phys-
ical observable as written in Equation 4.1, taken from
[10]. The sum of the latent space representations of
the particles is taken to be the latent space represen-
tation of an event.

Σ

Σ

F

Input 
Set 1

Input 
Set 2

Optional 
Input

Latent Space

(b) Figure depicting a representation of the
model used in this analysis. Notable differences
include the use of multiple Φ functions, as well
as the interpretation of F as a representation of
an event. Here, it instead reprents an ROI.

Figure 4.1: Comparison of the structure described in [10] and the structure used in this work.

very abstract language, the approach can be understood by considering two familiar examples of

observables: particle multiplicity and mass. In the first case, our Φ maps every particle to 1, so

that our sum will simply equal M . Clearly then F (x) should just be F (x) = x, that so we obtain

the particle multiplicity M as desired. Similarly, if we map every particle to its four-momentum pµ

and define F (xµ) =
√
xµxµ, we will obtain the mass.

4.2 Application to Displaced Vertices

As is no doubt already clear, this analysis is concerned with the identification of displaced vertices.

Though this application is more complicated than those discussed in the previous section, the Deep

Sets/particle flow network framework is robust enough to handle it, albeit with slight adjustments.

In particular, Figure 4.1b is a more accurate representation of the framework of our model 2. We

sort our input variables into multiple sets and assign each set their own Φ. Classification of input

variables into a set is dependent on the characteristics of the variables, and is described in Chapter

5. Additionally, some variables can be passed through directly to F .

2Note that this document contains a description of the structure of the ML model at the time the work was
performed, which is no longer completely accurate.
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CHAPTER 5

REGIONS OF INTEREST

As mentioned, this analysis seeks to use the presence of displaced vertices to distinguish signal

events from background. In particular, the novel Regions of Interest (ROI) mechanism is applied,

rather than using a variable such as the number of displaced jets. Because of the number of variables

associated with each ROI (20-30), a machine learning based tagging approach is used rather than

the variable tagging method used in the ZH analysis. This section details the formation of ROIs,

the variables contained within them, and the role of ML in this method.

5.1 ROI Formation

The principle behind using ROIs is to identify displaced vertices directly, rather than by identifying

displaced objects (jets, electrons, etc.) within them. Figure 5.1 displays a cartoon depiction of the

formation process, as well as of the annulus definition. ROI formation begins by using the CMSSW

V0Fitter to fit pair-wise tracks of Lost-tracks and PackedPFCandidates in MINIAOD data into a

vertex. The fitted vertex (vertices) is (are) then clustered into a Region of Interest with a 1 cm

radius. We then need to define the annulus of the ROI:

• start with a cone of ∆R < 0.3 around the center of the ROI, where ∆R is calculated with

respect to the primary vertex

• define the annulus plane as the plane passing through the center of the ROI and oriented

perpendicularly to the axis of the cone

• form a circle in the annulus plane corresponding to the intersection with the cone 1

• any tracks that pass through the annulus are also saved within the ROI data and designated

as annulus tracks

All of the information associated with the tracks and annulus tracks is therefore stored within each

ROI.

1The current version of this technique takes the circle and uses it to form a spherical shell, which is called the
isolation shell [8]. Any tracks that pass through the entire shell are the annulus tracks.
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Figure 5.1: Figure depicting the formation of an ROI, as well as a definition of the annulus, adapted
from figures in [8].
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5.2 Machine Learning Input Variables

Appendix A contains a description of the deep neural network machine learning used in this work.

Table 5.1 shows the Tensorflow parameters used in this analysis. The extensive variables for input

Table 5.1: Tensorflow information

Epoch 300
batch size 250
Phi sizes ((64,128,256),(32,64,128))

f sizes (256,128,32)
Signal ggHSSTo4Tau-MS15GeV-cτ100 mm

Background QCD Pt120-170 MuEnriched and TTJets

of our deep neural network (DNN) are described and categorized in Tables 5.2, 5.3, and 5.4.

Table 5.2: ROI (trackCluster) variables by category

TrackCluster Position TrackClusters.vx() - primaryVertex.X()
Position TrackClusters.vy() - primaryVertex.Y()
Position TrackClusters.vz() - primaryVertex.Z()
Covariance TrackClusters.vertexCovariance()(0,0)
Covariance TrackClusters.vertexCovariance()(0,1)
Covariance TrackClusters.vertexCovariance()(0,2)
Covariance TrackClusters.vertexCovariance()(1,0)
Covariance TrackClusters.vertexCovariance()(1,1)
Covariance TrackClusters.vertexCovariance()(1,2)
Track0,1 Track0,1.pt
Track0,1 Track0,1.eta
Track0,1 Track0,1.phi
Track0,1 Track0,1.dxy
Track0,1 Track0,1.dz
Track0,1 Track0,1.normalizedChi2
Track0,1 Track0,1.HighPurityInt

The variables saved within the ROI are grouped into four categories: vertex, annulus, auxiliary,

and event. The vertex category contains essentially contains the position of the vertex (and each

track), the pT for each track, and the impact parameter of each track (along with associated error

information). It is important to note that the positions within the ROI are defined with respect

to the location of the primary vertex. The annulus category contains the information (pT, dxy,

14



Table 5.3: ROI (Annulus) variables by category

Annulus pfCandidate/LostTracks pfCandidate/LostTracks.pt
pfCandidate/LostTracks pfCandidate/LostTracks.eta
pfCandidate/LostTracks pfCandidate/LostTracks.phi
pfCandidate/LostTracks pfCandidate/LostTracks.dxy
pfCandidate/LostTracks pfCandidate/LostTracks.dz
pfCandidate/LostTracks pfCandidate/LostTracks.normalizedChi2
pfCandidate/LostTracks pfCandidate/LostTracks.HighPurityInt
pfCandidate/LostTracks pfCandidate/LostTracks.DeltaR(trackMomentum)

Table 5.4: Event variables by category

ROI Position x
Position y
Position z

HT

dz, etc.) associated with each track that passed through the aforementioned annulus circle. The

auxiliary information contains the location of each vertex within an ROI, as well as the number

of vertices present within it. ROIs commonly have only one vertex present, so this is essentially

a proxy for the location of the vertex itself. As will be shown later, both the annulus and the

auxiliary variables are strong predictors of signal vs. background. For instance, signal events are

not likely to produce many tracks that are captured within the annulus compared to a major source

of background such as QCD. The event level info includes ROI position and HT . The ROI position

is duplicate information of vertex position in the vertex category, and the HT variable can be

thought of as describing the amount of hadronic activity in the process, with the scale set by the

125 GeV Higgs mass.

15



CHAPTER 6

RESULTS

6.1 Data Simulation & ML Optimization

In order to train ML models for data analysis, one must first simulate the appearance of signal and

background events in CMS. Of course, we also have to form ROIs in the simulated data according

to the process described in Chapter 4. This process is beyond the scope of this work, but what

is important is that in order to do so, one must of course select parameters (mass, lifetime) of

the LLPs (the parameters used in this analysis are given in Chapter 3). This in turn means that

the ML model may perform differently depending on which parameters are chosen. Additionally,

the well-understood background processes (TTJets and QCD) must also be simulated, and also

depend on physical parameter choice. Again, this means that the performance of the ML model

depends on the values of the parameters, so in reality performance is dependent on the combination

of signal and background parameters. It is thus important to test each combination of signal and

background parameters, so that a model with the best performance can be produced and the most

stringent limits on branching ratios can be achieved. Table 6.1 depicts the combinations studied in

this work, along with their associated AUC scores. AUC is a metric used to assess the performance

of a machine learning model, where the closer the score is to 1, the better. The result of the training

is a neural network which assigns each ROI in the dataset a score between zero and one, where

zero indicates background and one indicates signal.

6.2 Epoch Testing

During testing of the various machine learning model parameters, the effect of varying epoch number

was also considered. The number of epochs refers to the number of times the entire dataset is passed

through the model. As one might expect, an increase in the epoch number typically corresponds

to a large increase in computing time, and it is therefore important to know at what point the

performance levels off. Table 6.2 displays the model output scores for various epoch numbers for

one of the models tested. The model appears to not benefit from more than ∼125 epochs.
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Table 6.1: Table of the AUC scores associated with each combination of signal and background for
models trained with 125 epochs. The AUC scores are all very similar, indicating that the method
is effective at a wide variety of signal and background parameters.

Signal Background AUC

ggH HToSSTo4Tau MH-125 MS-7 ctauS-10 QCD Pt-20to30 MuEnrichedPt5 0.9696
QCD Pt-470to600 MuEnrichedPt5 0.9727

TTJets 0.9680

ggH HToSSTo4Tau MH-125 MS-15 ctauS-10 QCD Pt-20to30 MuEnrichedPt5 0.9598
QCD Pt-470to600 MuEnrichedPt5 0.9679

TTJets 0.9610

ggH HToSSTo4Tau MH-125 MS-15 ctauS-100 QCD Pt-20to30 MuEnrichedPt5 0.9755
QCD Pt-470to600 MuEnrichedPt5 0.9738

TTJets 0.9680

ggH HToSSTo4Tau MH-125 MS-15 ctauS-1000 QCD Pt-20to30 MuEnrichedPt5 0.9791
QCD Pt-470to600 MuEnrichedPt5 0.9742

TTJets 0.9772

ggH HToSSTo4Tau MH-125 MS-40 ctauS-100 QCD Pt-20to30 MuEnrichedPt5 0.9695
QCD Pt-470to600 MuEnrichedPt5 0.9698

TTJets 0.9705

ggH HToSSTo4Tau MH-125 MS-55 ctauS-100 QCD Pt-20to30 MuEnrichedPt5 0.9635
QCD Pt-470to600 MuEnrichedPt5 0.9674

TTJets 0.9706

Epoch Number Loss Acc. val loss val acc AUC

100 0.2161 0.9074 0.2469 0.8942 0.9388

150 0.2039 0.9120 0.2393 0.8983 0.9414

200 0.1934 0.9151 0.2523 0.8953 0.9408

250 0.1977 0.9144 0.2459 0.8982 0.9399

300 0.1738 0.9272 0.2573 0.8977 0.9387

350 0.1607 0.9332 0.2693 0.8934 0.9403

400 0.1459 0.9387 0.2823 0.8970 0.9394

Table 6.2: Model output scores for varying epoch number during training.

6.3 ML Model Performance

While AUC is a good measure of the performance of a ML model, it is far from the only metric that

can be used. Additionally, other methods of evaluating ML models can help visualize differences in

discriminatory power, and actually display some of the physics embedded within the analysis. One

way to visualize comparisons of different ML models is through histograms such as the one in Figure

6.1, which shows the relative amount of events classified as signal and background for several signal

combinations, along with a dotted line showing the same for a QCD Pt20-30 MuEnriched back-
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ground dataset. Figure 6.2 shows a similar plot for another combination of signal and background.

Ideally, every signal point would lie in the bin closest to one, and similarly every background point

would lie in the bin closest to zero, but in actuality sharply decreasing curves towards or away from

zero for signal or background respectively indicate good performance. In the case of Figure 6.1,

the model was trained on a portion of mS = 15 GeV and cτS = 1 mm signal data, so it performs

quite well on the full signal and background datasets corresponding to these parameters. Clearly,

however, the performance does not extend as well to the longer lifetime datasets, indicating that

training with this choice of parameters is not well suited to create the main ML model for the

analysis. Additionally, there appear to be several peaks present at ROI scores of ∼0.4 and ∼0.8.

Similar peaks appear at slightly different ROI scores on the histogram in Figure 6.2. Further

studies are necessary to investigate the origin of these peaks, as they persist in different signal and

background samples. It is possible that they can be associated to specific particles; this could be

investigated by comparing the results to the Monte Carlo generation parameters.

Figure 6.1: A histogram depicting the number of events at each ROI score. The dotted line
indicates the performance of the model on a dataset containing purely QCD Pt20-30 MuEnriched
background events.
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Figure 6.2: A histogram depicting the number of events at each ROI score, for a mS= 7 GeV, cτ
= 10mm signal dataset and TTJets + QCD 120-170 background dataset.
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6.4 Variable Correlation

Another way to visualize ML model performance is through simple correlation plots, i.e. plots of

ROI score vs. each variable used as an input to the DNN. For example, one would expect that an in-

creasing ROI position (increasing distance from the primary vertex) would be positively correlated

with increasing ROI score for signal events, since signal events by nature have a large displacement

from the primary vertex. In other words, one would expect such a correlation because ROIs are

designed to identify displaced vertices. Similarly, you would expect a negative correlation for the

same such plot for background events, since it is unlikely that there would be many background

events with large displacements from the PV. Figure 6.3 displays such plots, and the behavior is

exactly as expected. Correlation plots have been produced for all of the variables used as inputs
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Figure 6.3: Correlation plots (ROI score vs. r) for signal and background, where r =
�

x2 + y2,
and x, y refer to the ROI coordinates. The model used was trained with signal ggHSSTo4Tau-
MS7GeV-cτ10 mm and background QCD Pt120-170 MuEnriched and TTJets.

Variable Correlation Factor

ROI Distance from Primary Vertex, r 0.57

Annulus Track ∆R to ROI -0.24

ROI Number of Constituents -0.14

Table 6.3: Table displaying several variable inputs to the ML model, ranked by absolute value of
correlation score.

to the ML model, and the complete set of plots are provided in Appendix A. The x-limits of each

plot have been manually adjusted to eliminate regions where there are very few events, as the

relationship between variable and ROI score can otherwise appear somewhat unclear. Several of

the top performing variables have been isolated and ranked by absolute value of correlation factor;
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the results of this are shown in Table 6.3. The tracks in the ROI vertices are ordered by transverse

momentum, with higher tranverse momentum desginated as track 0, and lower as track 1. This

is visible in Figure 6.4, where upon close inspection it is clear that higher values of pT are more

populated in the track 0 plot than in the track 1 plot.
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Figure 6.4: Correlation plots for vertex transverse momentum for each track in the ROI vertex.

We can understand the ordering of the results within Table 6.3 through physics. It is no surprise

that the strongest performing variable is distance from the primary vertex, as this directly related

to the defining characteristic of the signal signature, i.e. a long-lived particle. High transverse

momentum corresponding to signal makes sense, as the model used in this case was trained with

mS = 7 GeV, so there is a lot of energy available for a boost when the Higgs decays. This apparent

dependency on mass could be an issue if attempting to use a model trained with mS = 7 GeV to set

limits on mS = 40 GeV or 55 GeV, but would likely not be problematic if used for mS = 15 GeV

(see Figure 3.3 from Chapter 2). A negative correlation with the number of constituents in an ROI

is also consistent with physics. As mentioned in Chapter 4, background such as QCD is likely to

produce many tracks that are near each other and therefore stored within an ROI, whereas signal

is not. Thus one would expect and indeed finds that increasing number of constituents makes

the model less likely to identify an event as signal. This result is also reflected in the negative

correlation with annulus track ∆R to ROI, as signal events produce fewer annulus tracks that are

closer to the ROI, and QCD produces many annulus tracks that can be farther away.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

It is clear from the results that the ROI mechanism accomplishes its main purpose, which is to

identify displaced vertices and thereby eliminate a majority of events from consideration as pos-

sible signal. As the results summarized in Table 6.3 show, not all of the input variables are very

effective, and it is possible that performance of the model could be improved by removing some

of these inputs. However, this would need to be tested thoroughly as it is entirely possible that

the contribution of certain variables to the performance of the model cannot be demonstrated by

a simple correlation plot such as the ones produced in this work. This is particularly true for some

of the variables in the vertex category, where the information of one track alone is perhaps not suf-

ficient but instead the combined information of the two tracks is very useful for the model. Future

studies can determine the minimal number of inputs to the ML model that will produce sufficient

performance, thereby maximizing performance while minimizing computing time. Overall, the ROI

mechanism was effectively used in this analysis to identify events as potential signal. The scores

produced from this method were combined with cuts determined according to variables not used

as ML inputs in order to determine the final event selection [8]. The preliminary limits produced

by this analysis, taken from [8], are shown in Figure 7.1.

Figure 7.1: Preliminary limit plots for the branching ratio H → SS as determined in [8].
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The most probable use of the ROI mechanism in future analyses lies in its ability to identify

displaced vertices directly without the need to identify the physics objects within them. Any

physics search that has a clear trigger strategy and revolves around decays within the tracker of

CMS should be able to use the ROI mechanism. The advantage of using this method is that for sig-

natures similar to ours, where the actual reconstruction of the final state is too complicated to allow

the use of variable tagging or cuts, ROI score can be used to greatly reduce the potential number

of events that need to be considered. After this is done, additional cuts according to variables not

present in the ML can be applied, as in this analysis. The High Luminosity LHC (HL-LHC) will

be collecting data on and off from the late 2020s through the early 2040s, so analysis techniques

such as the ROI technique will be very useful in conducting searches using the massive amount of

HL-LHC data in the coming years.

One potential use of ROIs in an ongoing search for new physics is in emerging jets, which are

predicted by theories that postulate the existence of new fermions that have no electric charge but

are instead charged under some QCD-like force in the dark sector. Since the interaction is QCD-like,

these fermions, or “dark quarks”, have similar confinement properties to the SM quarks, meaning

they will immediately hadronize into a jet if produced in isolation. In particular, some models of

these dark quarks predict jets containing long-lived dark hadrons, which are called emerging jets.

These dark hadrons decay to SM particles via some mediator particle, therefore giving rise to many

displaced vertices within the jet. A search for these jets based on using a trigger based on the pT

of jets in an event was performed in [11]. The analysis was able to set limits on the signal cross

section over many regions of dark pion lifetime and mediator particle mass, but it relied on the

use of several artificial variables in order to identify events as signal or background. Given that

the signature is so messy, it is possible that using the ROI mechanism, i.e. including all of the

displaced vertices present in the emerging jets inside an ROI (Figure 7.2), would allow for the ML

model to pick up on patterns that are not obvious from the artificially defined variables. ROI score

could then serve as a first event selection before other cuts were applied, which may allow for more

stringent limits to be set.
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Figure 7.2: Cartoon diagram of the displaced vertices within an emerging jet being clustered into
an ROI.

24



APPENDIX A

CORRELATION PLOTS

This appendix contains the correlation plots for the variables investigated that were not shown in

Chapter 5. Plots for the entire set of ∼ 30 variables that serve as ML inputs are available, but are

not shown here1. The lack of a clear pattern in many of the plots (or a large correlation coefficient)

demonstrates that on their own they are not contributing to the performance of the model in an

obvious way. Future work should involve investigating the performance of the model with some of

the low scoring variables removed.
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1See https://drive.google.com/drive/folders/1VfCNeiuPTaBsKykkbAuYd78I5bdX3BFg?usp=share_link for
the other plots.
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