Diboson Cross Sections at $\sqrt{s}=1.96$ TeV

Andrew Askew (Florida State University and the DØ Experiment) on behalf of the CDF and DØ Collaborations Recontres de Moriond QCD, La Thuile

Diboson Cross Sections

- Cross sections tell us about boson self-coupling.
 - Standard Model is very specific:
 - Requires self coupling in some processes.
 - > Forbids it in others. q

Required.

- Each measurement is thus not only a test of the Standard model, it is also a search for new physics.
 - ≻ Wγ

 \bar{a}

- > Ζγ
- > WW
- > ZZ/ZW

The Experiments:

The experiments themselves have been covered earlier this week. I will not do so here (time).

$$p\overline{p}, \sqrt{s}=1.96 \text{ TeV}$$

W, Z, and γ Identification

- Analyses presented here are only leptonic decays: e,µ.
 - Clean signals at a hadron collider.
 - > Require high p_T , isolated e or μ .
 - Efficiencies measured through inclusive Z->ee (µµ) events in data.
- For photon identification, rely on Monte Carlo:
 - No clean source of isolated photons in data.

Wγ

- Three leading order diagrams:
 - Initial State Radiation
 - Final State Radiation
 - > Trilinear Vector Boson Vertex
 - Cross sections contain all of these:
 - > Always measured with respect to a threshold on photon E_T , and lepton photon separation.
 - Dominant background is W+j where the jet is misidentified as a photon. Andrew Askew

CDF Wy Cross Section

DØ Wy Cross Section

Wy Anomalous Couplings

- Photon E_T agrees w/ S.M.
 (last is overflow bin).
 - Form a binned-likelihood based on E_T^{γ} in a λ_{γ} vs. $\Delta \kappa_{\gamma}$ grid (including bkgd) on events w/ MT3>90 GeV/c².

Ζγ

- First two are allowed, final state and initial state radiation.
- In the Standard Model, the last is forbidden.
- For the llγ final state there are contributions from both on-shell Z production, and Drell-Yan.
- > Only significant background is Z+j.

CDF Zy Cross Section

Channel:	eeγ	μμγ
η^{l}	2.6	1.0
p_{T}^{-1}	25	20
ηγ	1.0	
p_{T}^{γ}	7	
M ₁₁	$40 < M_{II} < 130$	
Lum (pb ⁻¹⁾	202	192
Bkg:	$2.8{\pm}0.9$	2.1 ± 0.6
SM exp:	31.3±1.6	33.6±1.5
Observed:	36	35

$$\sigma(p\bar{p} -> ll\gamma; E_T^{\gamma} >7 \text{ GeV}, dR_{\gamma} >0.7) = 4.6 \pm 0.6 \text{ pb}$$

PRL 94, 041803 (2005) SM: 4.5 ± 0.3 pb

10

DØ Zy Cross Section

Zγ Anomalous Couplings

- > Final state has couplings to both γ and Z.
 - Highly constrained by studies at LEP.
 - Backgrounds: DY, WZ, ZZ, top...
- Favored discovery channel:
 - Higgs (covered later this week).
 - Heavy resonances.

DØ WW Cross Section

WZ/ZZ Limit (CDF)

- Set an upper limit on WZ/ZZ production combined.
- Identify two leptons to resolve the Z, and then make additional requirements (which can be looser to gain efficiency).
- > Small backgrounds from DY, WW, top.
- > Three Channels considered:
 - > Two leptons plus missing E_{T} .
 - > Three leptons plus missing E_{T} .
 - Four leptons.

CDF WZ/ZZ Limit

WZ

DØ performed a search exclusively for WZ to three leptons plus missing transverse energy.

DØ WZ Analysis

or, interpreted as cross section: $\sigma(p\bar{p}-WZ)=4.5^{+3.8}$ pb

DØ Preliminary

SM: 3.7 ± 0.1 pb

Probability of background to fluctuate up to 3 events: 3.5% 19

WZ Anomalous Couplings

 $\begin{array}{c|ccccc} \Lambda = 1.0 \ {\rm TeV} & {\sf D} \ensuremath{{\cal O}} \ {\sf Preliminary} & \Lambda = 1.5 \ {\rm GeV} \\ \hline -0.53 < \lambda_Z < 0.56 & -0.48 < \lambda_Z < 0.48 \\ -0.57 < \Delta g_1^Z < 0.76 & -0.49 < \Delta g_1^Z < 0.66 \\ -2.0 < \Delta \kappa_Z < 2.4 & - \end{array}$

- Inner contours: 2D limits. Outer contours are from unitarity.
- Best limits in WZ final states.
- First 2D limits in $\Delta \kappa_z$ vs. λ_z using WZ.
- Best limits available on Δg_1^{Z} , $\Delta \kappa_z$, and λ_z from direct, modelindependent measurements.
- The DØ Run II 1D limits are ~ factor of 3 better Run I limits.

Summary

- Many new results on Diboson production and coupling strengths.
 - All results represent a subset of current Run II Data :
 - You'll be hearing from us soon!

The following is a backup slide.

Previous Coupling results:

- > DØ and CDF put limits on anomalous WWY and WWZ Couplings in Run 1. $-0.25 < \Delta \kappa_{\gamma} = \Delta$
 - WWγ and WWZ couplings from WW
 - WWγ couplings from Wγ analyses
 - WWZ couplings from WZ
- DØ Combined Wγ, WW, WZ
 - LEP Combined (1D 95% CL)

LEP EWK Working Group hep-ex/0412015

 $-0.105 < \Delta \kappa_{\gamma} < 0.069$

$$-0.059 < \lambda_{\gamma} < 0.026$$

$$-0.051 < \Delta g_1^Z < 0.034$$

Didn't use a form-factor dependence in their couplings. "HISZ" SU(2)xU(1) coupling relations

$$\lambda_{\gamma} = \lambda_{Z}$$
 and $\kappa_{Z} = g_{1}^{Z} - \tan^{2}\theta_{w}(\kappa_{\gamma} - 1)$

(complementary in several ways) Andrew Askew 23

 $-0.25 < \Delta \kappa_{\gamma} = \Delta \kappa_{Z} < 0.39$ $-0.18 < \lambda_{\gamma} = \lambda_{Z} < 0.19$ 95% C.L. Tightest from $\Lambda = 2 \text{ TeV} \text{ the Tevatron}$