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Ø As I have doubtless said previously, photon identification is 
difficult.  There are many reasons for this, but foremost among 
them is that you have few direct measurements related to the 
object itself. 
Ø We just did an exercise on the clustering, so that’s part of  it.  

Another part related to that would be the best estimate of  the 
energy of  the photon. 

Ø But how the energy is distributed within the shower is key to 
discriminating against hadronic jets.  Since jets are typically 
composed of  more particles, the distribution of  energy tends to be 
broader than that of  a single electromagnetic shower. 

Ø Thus “Shower Width”. 

SHOWER WIDTH 
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Ø  Lots of  people know the name, but few know what the 
calculation is, and why the calculation looks the way it does. 

Ø  You have two equations: 

WHAT IS THIS THING? 
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If  it is blithely 
obvious to you 
why these two 
equations are 
used, then go 
back to checking 
your email. 



Ø Concentrate on the first equation for a moment: 

Ø Does it look familiar? 

THE FIRST EQUATION: 
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Ø We can then see that this really is the variance about the 
mean in η.  With appropriate weighting.  You would 
normally weight this sort of  calculation by the uncertainty 
in each value, but that’s not what we do here. 

Ø Which brings us to the second equation. 

Ø Here’s an actual paper reference to where this comes from: 
Awes et al., NIM A311, p130-138.   

Ø Also more directly for CMS, CMS Note 2001/034. 

SO THAT SHOULD LOOK 
FAMILIAR… 
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Ø  This was originally written for a 
different crystal calorimeter, the one 
used in the L3 experiment at LEP.  
This plot is from their simulation 
which shows what happens if  you 
calculate the position just using linear 
weights with energy. 

Ø This estimation counts the central 
crystal too heavily, and results in a 
“drawing” of  the position. 

Ø This is a known problem. 

FROM NIM: 
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Ø One expects a gaussian 
falloff  of  the 
electromagnetic shower, 
which suggests a logarithmic 
weighting.  You can see the 
result on the side. 

Ø Their equation: 

SINCE YOU EXPECT… 
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Ø  The short answer is that it has to be optimized.  Here are two plots 
from the CMS note I referenced:  Our current default is 4.7 

WHAT’S W0? 
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Linear 

Log-
weighted, 
w0=4.2 



Ø As long as the mean η was calculated with the same weighting, 
all of  this logically hangs together. 
Ø The “I” in σiηiη stands for “integer”, the calculations are carried out 

in the twenty-five crystals, using their relative crystal indices. 
Ø This centers the matrix on the highest energy crystal, and then 

proceeds to ignore the rest of  the results from the clustering. 
Ø  For some reason I’ve never figured out, the weighting for the 

position is NOT calculated consistently.  Maybe someday.   
Ø This is weird for multiple reasons, especially considering that the 

actual Photon position uses the log-weighting. 
Ø For now, the mean η in this calculation is just straight energy 

weighted.  The distribution actually does change because of  this. 

IN REALITY 

9 



Ø Actually calculating the shower width by hand isn’t as 
difficult as it sounds.   

Ø Don’t get me wrong, it’s not trivial.  First you have to calculate 
the energy weighted position, and then you need to calculate 
weights for each of  the crystals. 

Ø It should go without saying, you ignore negative energy crystals 
here. 

Ø Here are a couple of  simple examples as to how this goes… 

IN ACTION: 
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SIMPLE CASE:  ONE CRYSTAL HAS 
85% OF ENERGY THE OTHER HAS 

15%. 
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! = (0*0.85+1*0.15) = 0.15
w0 = 4.7+ ln(0.85) = 4.54;w1 = 4.7+ ln(0.15) = 2.80

" i!i!
2 =

(0! 0.15)2 * 4.54+ (1! 0.15)2 *2.80
4.54+ 2.80

= 0.289

" i!i!
2 = 0.289*(0.0174)2

" i!i! = 0.00936

Convert to eta space 



SIMPLE CASE:  ONE CRYSTAL HAS 
51% OF ENERGY THE OTHER HAS 

49%. 
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! = (0*0.51+1*0.49) = 0.49
w0 = 4.7+ ln(0.51) = 4.02;w1 = 4.7+ ln(0.49) = 3.99

" i!i!
2 =

(0! 0.49)2 * 4.02+ (1! 0.49)2 *3.99
4.02+3.99

= 0.250

" i!i!
2 = 0.250*(0.0174)2

" i!i! = 0.0087

Convert to eta space 



AS AN EXAMPLE: 
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Ø  Take a somewhat trivial 
model, say:  all the energy 
from the photon or 
electron is shared only 
between only two crystals. 

Ø  You can then calculate 
what happens to σiηiη as 
one varies the fraction that 
each crystal receives. 

Ø  Not as simple as one might 
think.  There’s no 
conservation of  the 
weights used, so you could 
end up with some very 
different values, even with 
a simple model. 

Percent of Energy in Maximum Crystal
0.5 0.6 0.7 0.8 0.9 1

i
i

0.0075

0.008

0.0085

0.009

0.0095



ENDCAP 
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Ø  Just as a BTW—one notices that the shower shape is 
distinctly different in the endcap. 

Ø This is effectively due to two reasons: 
Ø The conversion from crystal space to η space is different in 

the endcap (0.0447 in EE as opposed to 0.01745 in the EB) 

Ø The crystal coordinates aren’t in iη/iφ, they’re in ix/iy, so an 
approximation is made. 

Ø For this reason, you should really NEVER put EB and 
EE values of  this variable in the same plot.  It isn’t the 
same thing, even if  the calculation in all other ways is 
identical. 



IN ACTION 
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Ø The best way to understand how this calculation works is 
to actually DO it. 

Ø So that’s what we’re going to do.  Take the first Hybrid 
clustering exercise, and use that 5x5. 

Ø After you’ve calculated that value, you can open the 
interactive spreadsheet, and play around with the energy 
distribution, dynamically calculating the width. 


