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Overview and References:

1. Statistics as needed

2. Markov Chain Monte Carlo (MCMC)

3. Statistical Analysis of MCMC Data

4. Multicanonical Simulations

Markov Chain Monte Carlo Simulations and Their Statistical Analysis
(With Web-Based Fortran Code), World Scientific 2004.

Link at www.hep.fsu.edu/˜ berg .

First chapter and Fortran code are freely available. All simulations of
the book are number by number reproducable with the code provided
(assignments in the book).
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Probability Distributions and Sampling

In N experiments we may find an event A to occur n times. The
frequency definition of the probability of the event is

P(A) = lim
N→∞

n

N
.

Let P(a, b) be the probability that x r ∈ [a, b] where x r is a random
variable drawn in the interval (−∞,+∞) with a probability density
f (x) ≥ 0. Then,

P(a, b) =

∫ b

a
dx f (x) and f (x) = lim

y→x

P(y , x)

x − y
.

The cumulative distribution function (CDF) of the random variable x r

is

F (x) = P(x r ≤ x) =

∫ x

−∞
f (x ′) dx ′ .
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Important is the uniform probability distribution on [0, 1),

u(x) =

{
1 for 0 ≤ x < 1;

0 elsewhere.

Uniformly distributed random variables allow for the construction of
general random variables: Let

y = F (x) =

∫ x

−∞
f (x ′) dx ′

and y r be uniform in [0, 1). The random variable

x r = F−1(y r )

is then generated with the probability density f (x).
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Example Cauchy distribution:
f (x) =

1

π(1 + x2)
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Pseudo Random Numbers and Computer Code

It is sufficient to generate uniform (pseudo) random numbers!
Control your random number generator! The code of my book uses a
portable generator design by Marsaglia and collaborators. How to get
it? Download STMC.tgz, which unfolds under Linux by

tar -zxvf STMC.tgz

into the directory structure shown below (Windows: Install cygwin).

STMC

ForProgAssignments ForLib ForProc Work

a0102_02 a0102_03 ... ... a0103_01 ... ...
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Random Number Generator Routines:
rmaset.f sets the initial state of the random number generator.
ranmar.f returns one random number (function version rmafun.f).
rmasave.f saves the final state of the generator.
A large number of initial seeds provide independent series.

Illustration (Assignment a0102 02):

CALL RMASET: CALL RMASET:
RANMAR INITIALIZED. MARSAGLIA CONTINUATION.
4 CALLS TO RANMAR: 4 CALLS TO RANMAR:

idat = 1, xr = 0.116391063 idat = 1, xr = 0.495856345
idat = 2, xr = 0.964846790 idat = 2, xr = 0.577386141
idat = 3, xr = 0.882970393 idat = 3, xr = 0.942340136
idat = 4, xr = 0.420486867 idat = 4, xr = 0.243162394

CALL RMASAVE. CALL RAMSAVE.
CALL RANMAR: CALL RANMAR:

extra xr = 0.495856345 extra xr = 0.550126791
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Confidence Intervals and Sorting

One defines q-tiles (also quantiles or fractiles) xq of a CDF by

F (xq) = q . An example is the median x 1
2
.

The probability content of the confidence interval

[xq, x1−q] is p = 1− 2q .

Example: Gaussian (normal) distribution of variance σ2 :

[−nσ,+nσ] ⇒ p = 0.6827 for n = 1, p = 0.9545 for n = 2 .

The peaked cumulative distribution function (PCDF)

Fq(x) =

{
F (x) for F (x) ≤ 1

2 ,

1− F (x) for F (x) > 1
2 .

provides a convenient visualization of probability intervals.
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Gaussian PCDF:
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Sorting allows for an estimate of a CDF from data x1, ..., xn: We may
re-arrange the xi in increasing order:

xπ1 ≤ xπ2 ≤ · · · ≤ xπn

where π1, . . . , πn is a permutation of 1, . . . , n.
An estimator for the CDF F (x) is then the empirical CDF

F (x) =
i

n
for xπi ≤ x < xπi+1 , i = 0, 1, . . . , n − 1, n

with the definitions xπ0 = −∞ and xπn+1 = +∞. To calculate F (x)
one needs an efficient way to sort n data values in ascending (or
descending) order. In the STMC package this is provided by a
heapsort routine, which needs O(n log2 n) steps.

Example: Gaussian distribution in assignment a0106 02.
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Empirical versus exact PCDF:
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Empirical versus exact PCDF:
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Quantitative Science!
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Binning (Blocking)

Central Limit Theorem: Convergence of the Sample Mean

x r =
1

N

N∑
i=1

x r
i Gaussian with σ2(x r ) =

σ2(x r )

N
.

We block NDAT data into NBINS bins, where each binned data point
is the arithmetic average of NBIN = [NDAT/NBINS] sequential original
data points. The purpose of the binning procedure is twofold:

1. The binned data will become practically Gaussian when NBIN is
large enough. Gaussian error analysis applies even when the
original are not Gaussian.

2. Data generated by a MCMC process are autocorrelated. For
binned data the autocorrelations are reduced and can be
neglected, once NBIN is large enough.
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How Many Bins (Blocks)?

Gaussian Error Analysis for Small Samples.

Gosset’s Student Distribution provides confidence levels for standard
deviations s x estimated from Gaussian samples of size N :

s x = 1 s x = 2 s x = 3 s x = 4 s x = 5

N = 2 0.50000 0.70483 0.79517 0.84404 0.87433

N = 4 0.60900 0.86067 0.94233 0.97199 0.98461

N = 8 0.64938 0.91438 0.98006 0.99481 0.99843

N = 16 0.66683 0.93605 0.99103 0.99884 0.99984

N = 32 0.67495 0.94567 0.99471 0.99963 0.99998

N = 64 0.67886 0.95018 0.99614 0.99983 1.00000

N = ∞ 0.68269 0.95450 0.99730 0.99994 1.00000

Conclusion: 32 bins are sufficient at two sigma (but not if one is
interested in rare outliers at four sigma).
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Statistical Physics and MCMC Simulations

We aim now at calculating estimators of physical observables O in
equilibrium at temperature T in the Gibbs canonical ensemble. On a
computer all systems are discrete. Hence (β = 1/T ),

Ô = Ô(β) = 〈O〉 = Z−1
K∑

k=1

O(k) e−β E (k)

with Z = Z (β) =
K∑

k=1

e−β E (k)

where the sums are over all configurations (microstates) of the
system, E (k) is the (internal) energy of configuration k, and Z the
partition function.

In the following we use Potts models on d-dimensional hypercubic
lattices with periodic boundary conditions to ilustrate MCMC
simulations. While simple, these models allow to exemplify the
essential features in which we are interested.
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Potts Models
Their energy is defined by

E (k) =
2 d N

q
−2

∑
〈ij〉

δ(q
(k)
i , q

(k)
j ) with δ(qi , qj) =

{
1 for qi = qj ,
0 for qi 6= qj .

The sum 〈ij〉 is over the nearest lattice sites and the Potts spins q
(k)
i

take the values 1, 2, . . . , q. Our normalization is chosen so that the
energy per spin es = E/N agrees for q = 2 with the conventional
Ising model definition. For the 2d Potts models a number of exact
results are known for phase transitions at

βc =
1

2
ln(1 +

√
q) , es,c = Ec/N =

4

q
− 2− 2/

√
q .

The transitions are second order for q ≤ 4 and first order for q ≥ 5.
Therefore, they make a good testing laboratory for investigations of
phase transitions by MCMC methods.
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Markov Chain Monte Carlo
Why? Random sampling (β = 0) does not sample the configurations,
which are important at lower temperatures, while a Markov chain
allows to generate configurations k with probability

P
(k)
B = cB w

(k)
B = cB e−βE (k)

, cB normalization constant .

The vector PB = (P
(k)
B ) is called Boltzmann state. A Markov chain

is a dynamic process, which generates configuration kn+1

stochastically from configuration kn. The transition matrix

W =
(
W (l)(k)

)
,

where W (l)(k) = W [k → l ] is the probability to create configuration l
from k in one step, defines the Markov process. Note, that this
matrix is a very big and never stored in the computer.

The transition matrix generates configurations asymptotically with
the Boltzmann probabilities, when it satisfies the following properties:
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(i) Ergodicity:

e−βE (k)
> 0 and e−βE (l)

> 0 imply :

an integer n > 0 exists so that (W n)(l)(k) > 0 holds.

(ii) Normalization: ∑
l

W (l)(k) = 1 .

(iii) Balance: The Boltzmann state is an eigenvector
with eigenvalue 1 of the transfer matrix

W PB = PB or
∑
k

W (l)(k) e−βE (k)
= e−βE (l)

.

We have replaced the canonical ensemble average by a time average
over an artificial dynamics and one distinguishes dynamical
universality classes.
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The Metropolis Algorithm

Nicolas Metropolis, Arianna and Marshall Rosenbluth, Augusta and
Edward Teller, 1953 – AIP Conference Proceedings, Vol. 690, 2003.

Balance does constrain but not fix the transition probabilities W (l)(k).
The Metropolis algorithm can be used whenever one knows how to
calculate the energy of a configuration. Given a configuration k, a
configuration l is proposed with some probability

f (l , k) = f (k, l) normalized to
∑

l

f (l , k) = 1 .

The new configuration l is accepted with probability

w (l)(k) = min

[
1,

P
(l)
B

P
(k)
B

]
=

{
1 for E (l) < E (k)

e−β(E (l)−E (k)) for E (l) > E (k).

If l is rejected, k is counted again.
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The Heatbath algorithm (Gibbs sampler)

Glauber 1964, Creutz 1980; (Geman and Geman 1984).

The heat bath algorithm chooses a spin qi directly with the local
Boltzmann distribution defined by its nearest neighbors

PB(qi ) = const e−β E(qi ) .

Several Metropolis hits (on the same spin) are needed to reach this
distribution. Therefore, one heatbath update is more efficient than
one Metropolis update. But the calculation of the local heatbath
probabilities is often too CPU time consuming to make it a viable
alternative.

Start and equilibration: Initially we have to start with a
microstate which may be far off the Boltzmann distribution. Although
the weight of states decreases ∝ 1/n with the number of steps n, and
is finally swallowed by the error bar ∝ 1/

√
n, factors can be large and

one should exclude the initial states from the equilibrium statistics.
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Many ways to generate start configurations exist, e.g.,

1. A random configuration corresponding to β = 0.
2. An ordered configuration for which all Potts spins take on the

same q-value.

Example: Initial time series of 200 sweeps on a 80× 80 lattice for the
q = 10 Potts model at β = 0.62 (assignment a0303 05). A sweep is
defined by updating each variable on the lattice once or once in the
average.
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Consistency Checks

2d Ising model: Exact finite lattice results of Ferdinand and Fisher.
Simulation on a 202 lattice at β = 0.4 using 10 000 sweeps for
reaching equilibrium and 64 bins of 5 000 sweeps for measurement
gives (assignment a0303 06):

es = −1.1172 (14) (Metropolis) versus ês = −1.117834 (exact) .

Gaussian difference test: Q = 0.64 (consistent).

2d 10-state Potts model on a 20× 20 lattice at β = 0.62 : Metropolis
(Met) versus heatbath (HB) updating gives (assignment a0303 08)

actm = 0.321772 (75) (Met) versus actm = 0.321661 (70) (HB) .

Q = 0.28 for the Gaussian difference test (consistent).
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Observation of a first order phase transition

To illustrate features of a first order phase transition we simulate
the 3d 3-state Potts model on a 243 lattice at a pseudo-transition
temperature and plot its energy histogram. A characteristic double
peak structure is found (assignment a0303 10, takes about 17.5
minutes on a 2.8GHz PC):
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Self-Averaging Illustration for the 2d Heisenberg model

E = −
∑
〈ij〉

~si ·~sj with 3d unit vectors ~s 2
i = 1 .

Self-averaging: The larger the lattice, the smaller the confidence
range found from the PCDF of the energy distribution (a0304 08):

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.36  0.38  0.4  0.42  0.44  0.46  0.48  0.5

F q

actl

L=20
L=34
L=60

L=100

The other way round, the PCDF is well suited to exhibit observables
for which self-averaging does not work (e.g., in spin glasses).
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Statistical Errors of Markov Chain MC Data
A typical MC simulation falls into two parts:

1. Equilibration without measurements.
2. Production with measurements.

If your measurements are CPU time extensive:
Spend 50% of your CPU time on measurements!

Autocorrelations

We like to estimate the expectation value f̂ of some observable. We
assume that the system has reached equilibrium. How many sweeps
are needed to estimate f̂ with some desired accuracy? To answer this
question, one has to understand the autocorrelations.
Given is a time series of measurements fi , i = 1, . . . ,N. With the
notation t = |i − j | the autocorrelation function of the mean f̂ is

Ĉ (t) = Ĉij = 〈 (fi − 〈fi 〉) (fj − 〈fj〉) 〉 = 〈f0ft〉 − f̂ 2
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Some algebra shows that the variance of the estimator f for the mean
and the autocorrelation functions are related by

σ2(f ) =
σ2(f )

N

[
1 + 2

N−1∑
t=1

(
1− t

N

)
ĉ(t)

]
with ĉ(t) =

Ĉ (t)

Ĉ (0)
.

This equation ought to be compared with the corresponding equation
for uncorrelated random variables σ2(f ) = σ2(f )/N. The factor in
the bracket defines the integrated autocorrelation time

τint = lim
N→∞

[
1 + 2

N−1∑
t=1

(
1− t

N

)
ĉ(t)

]
= 1 + 2

∞∑
t=1

ĉ(t) .

But: The variance of τint divergent! Solution: Window method.

τint(t) = 1 + 2
t∑

t′=1

ĉ(t ′) .

Take the estimate as soon as this function becomes flat.
Alternative: Blocking method τint = σ2

NBIN→∞/σ2
NBIN=1.
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Example:

Metropolis Generation of Gaussian random numbers. Estimates from
the blocking method are also shown. Statistics from up to down:
221 = 2, 097, 152, 217 = 131, 072 and 214 = 16, 384 updates
(assignment a0401 02).
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Self-consistent versus reasonable error analysis

Calculation of the integrated autocorrelation time provides a
self-consistent error analysis. In practice this is often out of reach:
About twenty independent data are sufficient to estimate mean values
reliably (Student distribution), while one thousand are needed for an
estimate of the integrated autocorrelation time (10% accuracy on the
2σ confidence level as implied by the χ2 distribution for error bars of
Gaussian data: Variance ratio F-test).

In practice, one may rely on the binning method with a fixed number
of ≥ 16 bins. How do we know then that the statistics has become
large enough? There can be indirect arguments like finite size scaling
or other extrapolations of the integrated autocorrelation time. This is
no longer a self-consistent, but a reasonable error analysis.

Bernd A. Berg (FSU) MCMC Tutorial Lecture Boston 11/29/2006 29 / 42



Comparison of Markov chain MC algorithms

The d = 2 Ising model at the critical temperature
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One-hit Metropolis algorithm with sequential updating: critical
slowing down, τint ∼ Lz where z ≈ 2 is the dynamical critical
exponent (assignment a0402 02 D).
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Another MC dynamics:

Swendsen-Wang (SW) and Wolff (W) cluster algorithms
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Multicanonical Simulations
One of the questions which ought to be addressed before performing
a large scale computer simulation is “What are suitable weight factors
for the problem at hand?” So far we used the Boltzmann weights as
this appears natural for simulating the Gibbs ensemble. However, a
broader view of the issue is appropriate.
Conventional simulations can by re-weighting techniques only be
extrapolated to a vicinity of the simulation temperature. In contrast,
a single multicanonical simulation allows to obtain equilibrium
properties of the Gibbs ensemble over a range of temperatures. Of
particular interest are two situations for which canonical simulations
do not provide the appropriate implementation of importance
sampling:

1. The physically important configurations are rare in the canonical
ensemble.

2. A rugged free energy landscape makes the physically important
configurations difficult to reach.
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Multicanonical simulations sample, in an appropriate energy range,
with an approximation to the weights

ŵmu(k) = wmu(E
(k)) = e−b(E (k)) E (k)+a(E (k)) =

1

n(E (k))

where n(E ) is the number of states with energy E . The function
b(E ) defines the inverse microcanonical temperature and a(E ) the
dimensionless, microcanonical free energy. The function b(E ) has
a relatively smooth dependence on its arguments, which makes it a
useful quantity when dealing with the weight factors. The
multicanonical method requires two steps:

1. Obtain a working estimate the weights. Working estimate means
that the approximation has to be good enough so that the
simulation covers the desired eneryg or temperature range.

2. Perform a Markov chain MC simulation with the fixed weights.
The thus generated configurations constitute the multicanonical
ensemble.
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How to get the Weights?

To get the weights is at the heart of the method. Some approaches
used are listed in the following:

1. Overlapping constrained (microcanonical) MC simulations.
Potential problem: ergodicity.

2. Finite Size Scaling (FSS) Estimates. Best when it works!
Problem: There may be no FSS theory or the prediction may be
so inaccurate that the initial simulation will not cover the target
region.

3. General Purpose Recursions. Alternatives: Multicanonical
recursion (animation), Wang-Landau recursion, ...
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Example Run

Ising model on a 20× 20 lattice: The multicanonical recursion is run
in the range

namin = 400 ≤ iact ≤ 800 = namax .

The recursion is terminated after a number of random walk cycles.
events. A random walk cycle (also tunneling event) is defined as an
updating process which finds its way from

iact = namin to iact = namax and back .

For most applications ten cycling events lead to acceptable weights.
For an example run of the Ising model we find the requested 10
random walk cycles after 787 multicanonical recursions and 64,138
sweeps. The subsequent production run of 32× 10, 000 sweeps gives
84 random walk cycles (assignment a0501 01).
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Reweighting to the Canonical Ensemble

Given the multicanonical time series, where i = 1, . . . , n labels the
generated configurations. The formula

O =

∑n
i=1O(i) exp

[
−β E (i) + b(E (i)) E (i) − a(E (i))

]∑n
i=1 exp

[
−β E (i) + b(E (i)) E (i) − a(E (i))

] .

replaces the multicanonical weighting of the simulation by the
Boltzmann factor. The denominator differs from the partition
function Z by a constant factor which drops out (for discrete systems
this simplifies for functions of the energy using histograms). The
computer implementation of these equations requires care and
logarithmic coding relying on the formula

lnC = max (lnA, lnB) + ln{1 + exp [−| lnA− lnB|]}

ought to be used.

Bernd A. Berg (FSU) MCMC Tutorial Lecture Boston 11/29/2006 36 / 42



Error Bars of Nonlinear Functions

f̂ = f̂ (x1, . . . , xN) , biased estimator : 〈f 〉 6= f̂ .

Use the Jackknife Method!
Allows to correct for the bias and the error of the bias. Jackknife
estimators simply regroup the bins:

f
J

=
1

N

N∑
i=1

f J
i with f J

i = f (xJ
i ) and xJ

i =
1

N − 1

∑
k 6=i

xk .

The estimator for the variance is

s2
J (f

J
) =

N − 1

N

N∑
i=1

(f J
i − f

J
)2 .

Straightforward algebra shows that in the unbiased case the jackknife
variance reduces to the normal variance. Of order N operations are
needed to construct the jackknife bins xJ

i . The extra effort is
minimal. Jackknife should be the standard of error analysis!
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Energy and Specific Heat Calculation

We are now ready to produce multicanonical data for the energy per
spin (with jackknife errors) of the 2d Ising model on a 20× 20 lattice
and compared them with the exact results of Ferdinand and Fisher
(assignment a0501 03):
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The same numerical data allow to calculate the specific heat

C =
d Ê

d T
= β2

(
〈E 2〉 − 〈E 〉2

)
.
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Free Energy and Entropy Calculation

At β = 0 the Potts partition function is Z = qN . Multicanonical
simulations allow for normalization of the partition function, if the
temperature range includes β = 0. Example: Entropy of the 2d Ising
and 10-state Potts models on a 20× 20 lattice (assignment a0501 03
for Ising; a0501 02 and a0501 05 for 10-state Potts).
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Summary and Conclusions

I We considered Statistics, Markov Chain Monte Carlo
simulations, the Statistical Analysis of Markov chain data
and, finally, Multicanonical Sampling.

I Each method comes with its entire source code. Base provided
on which improvements can be build and documented. No
culture of improving code? Often encountered extremes:
Bad code, too specialized (assembler) code.

I Standard for MCMC simulations of the book: Reproducability!
Also for computational papers!?

I It is a strength of computer simulations that one can generate
artificial ensembles (not realized by nature), which enhance the
probabilities of rare events one may be interested in, or speed up
the dynamics.
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