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Overview

1. Metropolis Algorithm and Hastings’ Extension

2. Umbrella Sampling

3. Multicanonical and Multimagnetical Simulations

4. New Horizons

5. Replica Exchange Method and Expanded Ensembles

6. Summary and Conclusions

The talk will try to clear up some confusion about generalized
ensemble methods (Get to the bottom of Charlie Brooks statement:
“It is all umbrella sampling.”) by presenting developments close to
their chronological order.
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Metropolis Algorithm and Hastings’ Extension

Markov Chain Monte Carlo (MCMC) simulations started in earnest
with the following famous paper:
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Famous accept/reject criterion.

When a move is rejected: Count present configuration again!

Bernd A. Berg (FSU) Generalized Ensembles History Telluride 7/14/2008 4 / 50



Notable early developments:

1959 Salsburg, Jacobson, Fickett, and Wood, J. Chem. Phys. 30,
65–72: An attempt to calculate the partition function by MCMC
using a method called in the modern language reweighting:

exp(−β E ) → exp(−β E −4β E ) = exp(−β′ E ) .

As noticed by the authors their method is restricted to very small
lattices.

1963 Glauber, J. Math. Phys. 4, 294-307: discussion of heatbath and
other dynamics for the Ising model.

1967 McDonald and Singer, Discussions Faraday Soc. 43, 40–49:
Used reweighting to evaluate physical quantities over a small range
of temperatures.

1972 Valleau and Card, J. Chem. Phys. 37, 5457–5462: Multistage
sampling using overlapping bridging distributions.
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Extension:
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Arbitrary distributions π:
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Reversibility conditions: Detailed balance.
Irreducibility: Ergodicity.
Normalization of the distribution πi drops out.

Metropolis updating is a special case:

sM
ij =

{
1 +

πiqij

πjqji
for πjqji

πipij
≥ 1 ⇒ αM

ij = 1 ,

1 +
πjqji

πiqij
for πjqji

πipij
< 1 ⇒ αM

ij =
πjqji

πiqij
,

which goes for qij 6= qji sometimes under the name biased Metropolis
updating.
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Symmetry:

qij = qji ⇒ αM
ij =

{
1 for πj

πi
≥ 1 ,

πj

πi
for πj

πi
< 1 .

Boltzmann distribution:

πi = exp(−βEi ) ⇒ Metropolis paper.
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Umbrella Sampling

Torrie and Valleau, Chem. Phys. Lett. 28 (1974) 578: estimation of
free energies by sampling on distributions designed for this purpose
(no reference to Hastings). Further Elaboration:

Since we want to explore a wider region of ionic separations, we used
a modified importance sampling scheme. The configuration were
chosen with a frequency proportional to w(r12) exp(−U/kT ), where
the weighting function w(r12) was chosen to spread the sampling over
the desired range of r12. ... Accepted or rejected depending on the
ratio

π′

π
=

w(r ′12)

w(r12)
exp

(
−U ′ − U

kT

)
.
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J. Comp. Phys 23, 187–199 (1977):

... statistical properties such as the entropy and free energy, because
they cannot be expressed as ensemble averages, have not been so
easily accessible. The conventional technique has been numerical
integration, ... . This somewhat cumbersome method is least efficient
or altogether unworkable when the system undergoes a phase
transition, because of the difficulty of defining a path of integration on
which the necessary ensemble averages can be reliable measured, ...
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Summary:

1. Weighting functions w(q1, . . . , qN) depend on (generalized)
coordinates.

2. Determination via trial and error.

Conclusion eleven years later (Li and Scheraga, J. Mol. Struct.
(Theochem) 179, 333-352 (1988)):

The difficulty of finding such weighting factors has prevented wide
applications of umbrella sampling.
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Umbrella Sampling in Practice

J. Am. Chem. Soc. 107, 154–163 (1985):
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Summary:

Tedious patching of umbrella potentials.

Let’s now backup a bit in time to follow another line of developments:
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Binder’s Method for Estimating Interface Tensions

Binder, Phys. Rev. A 25, 1699–1709 (1982).

Simulations with periodic boundary conditions.

From equal heights double peaks : F s
L = − 1

L(D−1)
ln

(
Pmin

L

Pmax
L

)
.

First results with canonical simulations remained pitiful. Reason:
Pmin

L is exponentially suppressed in the canonical ensemble.
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Chandler: Introduction to Modern Statistical Mechanics, Oxford
University Press 1987. Chapter 6.3: Non-Boltzmann Sampling:

Non-Boltzmann sampling is a powerful tool when the reference or

unperturbed energy, E
(0)
ν , creates a trajectory that is close to that of

Eν . Comment: There is no need for the trajectories to stay close.

Non-Boltzmann sampling can also be useful in removing the
bottlenecks that create quasi-ergodic problems and in focusing
attention on rare events. Comment: This is on the right track.

The practice: To illustrate this methodology, we consider ... the
computation of the free energy function, Ã(M). This function is
defined for the Ising magnet by

exp
[
−βÃ(M)

]
=
∑
v

∆

(
M − µ

N∑
i=1

si

)
exp (−βEν) ,

where ∆(x) is the Kronecker delta ... .

Patching of of weighting factors from umbrella or window potentials
is then done (e.g., Chandler 1987). But applications remained rather
limited, although MCMC simulations flourished in the 1980s.
Furthermore, there appeared to be no focus on identifying challenging
problems, which could be overcome by using umbrella sampling.
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Clearly,

exp
[
−βÃ(M)

]
∝ P(M) =

〈
∆

(
M − µ

N∑
i=1

si

)〉
,

where P(M) is the probability of observing the Ising magnet with
magnetization M. ... if we consider the situation of broken symmetry
(i.e., when T < Tc), and plan to compute Ã(M) for a wide range of
M values, we immediately encounter a serious problem ... Ã(M) is a
bistable function of M, ... visitation of states with M = 0 is an
infrequent event ...
The method of umbrella sampling, however, avoids this difficulty. We
chose a set of umbrella or window potentials

Wν = 0, for Mi − w/2 ≤ µ

N∑
j=1

sj ≤ Mi ≤ M − i + w/2

= ∞, otherwise.

... Ã(M) is determined in each window to within an additive constant

... , which must be adjusted from one window to the next, ...
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Let τ denote the required computer time to acquire such (accurate)
statistics in each window. ... Note that

τ ∝ w2 .

Therefore, the total computation time required to determine Ã(M) by
the method of umbrella sampling is

tCPU ∝ nw2 .

Now, how much time would it have taken if we did not use this
method? As a lower bound, let us assume that Ã(M) does not vary
more than a few kBT over the entire range of M. The size of this
range is nw . Therefore, the time to sample this range is proportional
to (nw)2 = n tCPU. Hence, without the windows, the computation
time would be n times longer than that with the n windows.

Exercise BB1: What is wrong with Chandler’s argument?

(Replacing Exercise 6.8 of the book.)
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The advantage (i.e., lower computation time) of umbrella sampling is,
of course, even greater than this when regions of M have relatively
high values of Ã(M) and thus relatively low probabilities.

Comment: This is the (only) major advantage!

400 spin Ising magnet, ... 10 windows were used between M = 0 and
M = 400µ. From the figure (next transparency):

Pmin

Pmax
≈ e−14 = 8.3× 10−7 .

Comment: Configurations sampled, which are in Boltzmann
simulations suppressed by 6 to 7 orders of magnitude.

No mention of Binder or any attempt to calculate the interface
tension (known exactly since Onsager’s 1944 solution of the
2D Ising model). Umbrella potentials by Tedious patching of windows
remains (in Chandler’s example chosen to be constant).
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Multicanonical and Multimagnetical Simulation

Also in 1987: Umbrella sampling in Chandler’s version was discovered
independently by Bhanot and collaborators, and used in a series of
papers: Phys. Rev. Lett. 59 (1987) 803 and references given therein.

Due to the tedious patching of windows their simulations remained
confined to rather small lattices.

This changed with
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... In practice the appropriate choice of the parameters in Eq. (7) is
obtained by making from the given systems an FSS prediction of the
density distribution PL(S) for the next larger system. A second run
may then be performed with optimized parameters [Citation End].

Changes compared to umbrella sampling:

No windows anymore, all in one ensemble.

Weights are not umbrella potentials w(q1, . . . , qN), but functions of
the energy: w(S), here S energy.

Weights are obtained in one (plus one) step(s).
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2D 10-state Potts model:
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Energy per spin histogram

allows then for accurate estimates of interface tension

eS 
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Back to Chandler’s Case
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L = 10, 20, 30, 40, 50, 60, 74, 80, 100.
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3D Ising model

Berg, Hansmann, and Neuhaus, Z. Phys. B 90 (1993) 229-239

1060 improvement over simulation with Boltzmann weights!
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New Horizons

We present a recursive procedure to calculate the parameters of
the recently introduced multicanonical ensemble and explore the
approach for spin glasses.

We suggest that in a large class of situations, in particular those
where canonical simulations face severe ergodicity problems, it is
more efficient to reconstruct the Gibbs ensemble form a simulation
of a multicanonical ensemble [7] than to simulate is directly.

[Citation End].
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Illustration of Rugged Free Energy Landscapes

Distribution of the 2D Ising Model Magnetization versus Temperature.
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One Edwards-Anderson Ising (EAI) Spin Glass Realization:

Parisi order parameter distribution versus temperature.
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Exercise BB2: Explain why patching windows cannot work well for
exploring these free energy landscapes.

Berg-Celik concluding remarks:

Jülich Conference, Berg, Int. J. Mod. Phys. C 3 (1992) 1083-1098:
Review up to then.
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Their review The Generalized-Ensemble Approach for Protein Folding
Simulations, Ann. Rev. Comp. Phys. 6, 129-157 (1999) coined the
name Generalized Ensembles.
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Poly-alanine:

Hansmann and Okamoto, J. Chem. Phys. 110, 1267-1276 (1999);
erratum 111, 1339.
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MUCA Performance
Slowing down in units of updates:

1. Optimum: ∝ N2 perfect random walk in the energy.
2. 2D 10-state Potts model (transition range): Effective
∝ N2.325 (10) observed (Berg and Neuhaus 1992).

3. 2D EAI spin glass: ∝ N3.2 (2) observed (Berg and Celik 1992).

Still exponential slowing down expected due to hidden energy barriers.
Even for simple first order phase transitions: Hager and Neuhaus, J.
Stat. Phys. 113 (2003) 47–83: ⇔

Transitions

only through

rare or suppressed

configurations.

Figure: lattice (right).
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Replica Exchange Method and Expanded Ensembles

The late 1980s and early 1990s saw a flurry of innovative activities on
MCMC methods.

Swendsen and Wang, Phys. Rev. 58 (1987) 86-88; Wolff Phys. Ref.
Lett. 62 (1989) 361-363: Cluster algorithms.

Ferrenberg and Swendsen, Phys. Rev. Lett. 61 (1988) 2635-2638, 63
(1989) 1658: Popularized histogram reweighting of canonical MCMC
simulations and focused them on determinations of finite-Volume
maxima of divergent quantities in studies of phase transitions.

Ferrenberg and Swendsen, Phys. Rev. Lett. 63 (1989) 1195-1198;
Alves, Berg and Villanova, Phys. Rev. B 41 (1990) 383: Multi-
histogram reweighting.

Question: Which of the earlier references relate to reweighting?
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Replica Exchange:

Swendsen and Wang, Phys. Rev. 57 (1986) 2607-2609: Introduced
(too) general replica exchange method.

Frantz, Freemann, and Doll, J. Chem. Phys. 93 (1990) 2769-2784:
Jump-walking feeds replica from a high- into a low-temperature
simulation. Does not fulfill balance (not replica exchange).

Geyer, in Proceedings of the 23rd Symposium on the Interface,
Keramidas (editor), Interface Foundation, Fairfax, Virginia (1991)
156-163: Multiple Markov chains (the same as replica exchange).

Hukusima and Nemoto, J. Phys. Soc. Japan 65 (196) 1604–1608:
Replica exchange. Often called parallel tempering when temperatures
are exchanged.

Hansmann, Chem. Phys. Lett. 281 (1997) 1267-1276: First
application to a biomolecule (Met-Enkephalin).
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Parallel Tempering:

For β1 < β2 < ... < βn consider the joint partition function

Z =
n∏

k=1

{
N∏

i=1

(2π mi kB Tk)3/2

N!

∫
d3xk

i exp
[
−βk U(~r k

1 , . . . ,~r k
N )
]}

of a molecular system, where the momenta are integrated out. Swaps
between (normally neighboring) temperatures are proposed and
accepted with the Metropolis probability

Pacpt = min
{

1, exp
[
+(βk − βl)

(
U(~r k

1 , . . . ,~r k
N )− U(~r l

1 , . . . ,~r l
N)
)]}

so that balance holds. The differences βk − βl have to be chosen
small enough to ensure reasonable acceptance rates.

Well-suited for parallel processing.

Other advantages: To be discussed.

Generalized ensembles can be exchanged as well, ...
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Do not confuse with

Expanded Ensembles:

Lyubartsev, Martsinovski, Shevkanov, and Vorontsov- Velyaminov,
J. Chem. Phys 96 (1992) 1776-1783.

Marinari and Parisi, Europhys. Lett. 19 (1992) 451-458: Simulated
tempering.

Weights

exp(−βm Ek + gm), m = 1, . . . ,M, k configuration,

and m is considered a new dynamical variable. Moves

m→ m ± 1

are proposed and rejected/accepted according to Metropolis. The
constants gm need to be adjusted to get reasonable acceptance rates.
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How to overcome a free energy barrier?

P
(E

)

E

High T
Low T

1. Flatten the barrier. This requires that the barrier is explicit in a
known reaction coordinate. Probabilities of transition states are
then greatly enhanced.

2. Jump the barrier via parallel or simulated tempering. Initial
low-temperature configuration(s) problematic! Probabilities of
transition states stay unchanged (tiny). Parallel tempering will
not estimate entropy and free energy across the barrier.
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Exploration of low temperature configurations in a rugged free energy
landscape:

M

E

High T Low T

If there are no major barriers in the energy variable, all of the
introduced methods explore all low temperature branches and yield
their relative probabilities as well as the global energy minimum.

Due to barriers in M: Large performance enhancement versus low
temperature Boltzmann simulations.
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Example (left over from my last MCMC course at FSU):

Parallel tempering with 8 processes for the 2D 10-state Potts model
on a 20× 20 lattice. Some parameters:

hq = 0, βmin = 0.65, βmax = 0.75, (note βt = 0.71303 . . . ).

Parallel Tempering Canonical Simulation

β τint(E ) τint(M) τint(E ) τint(M)

0.7133... 761 (21) 434 (13)× 10 1199 (51) 181 (10)× 102

0.7261... 54.0 (4.9) 611 (19)× 10 13.63 (22) 979 (48)× 104

Units are sweeps. Assembled statistics: 10× 220 per replica for PT,
10× 220 cano at β = 0.7133..., 103 × 222 cano at β = 0.7261... .

Exercise BB3: Explain why the integrated autocorrelation times
τint(E ) and τint(M) behave so differently.
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Summary and Conclusions:

This talk presented use of generalized ensembles in MCMC
simulations close to the chronological order of their development.
Obviously, my mini-review cannot be complete, I had to make
omissions and may have overlooked some relevant papers.

A message is that mastering simulation methods is not the trivial part
of a biophysical, chemical or physical MCMC study. Astronomically
large efficiency factors can float around between making it right or
wrong.

There have been hundreds of papers refining and improving the
methods outlined here. It is practically impossible to follow up on all
of them, all the more to verify them. Let me just pick four points:
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1. Wang-Landau, PRL 86 (2001) 361-363: Introduced a now widely
used algorithm, which can be employed as a recursion to get
working estimates of the MUCA weights.

2. Trebst, Huse and Troyer, PRE 70 (2004) 046710: Optimized the
MUCA weight with respect to cycling times. Improvement
factors appear to be around 3 to 5 compared to relying on flat
histograms.

3. Hamiltonian replica exchange, alchemical transitions and related
ideas have been studies by a number of authors, including Uli
Hansmann and Wei Yang, who are here and may tell you more.

4. Data analysis problems should not be neglected. For instance,
reweighting often requires a logarithmic coding, because factors
just get too large to be allowed in Fortran or C. That is a good
occasion to advertise my book for your library:
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Really huge improvement will get attention, because they would be
enabling methods for simulations which otherwise cannot be done.
However, attention is not enough. Required are independent
verifications, which too often never happen.

Where are we stuck?

Apparently at many fronts, but we focus here on the simulation of
well-defined models (all-atom in biophysics, classical spin glasses in
statistical physics, and so on).

1. Obviously there are often hidden barriers and we are unable to
find reaction coordinates in which the barriers become explicit.

2. The optimal performance of the discussed methods is limited by
a diffusive process. For large systems that can still be far too
slow. In some situations that is greatly improved by the
collective updating of cluster algorithms, but their application
range has remained fairly limited.

Challenges: Many. Combinations with MD simulations as for instance
pioneered by Wei Yang appear to me one of the promising roads.
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