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Summary and Conclusions

The talk will try to clear up some confusion about generalized

ensemble methods (Get to the bottom of Charlie Brooks statement:

“It is all umbrella sampling.”) by presenting developments close to
their chronological order.
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Metropolis Algorithm and Hastings' Extension

Markov Chain Monte Carlo (MCMC) simulations started in earnest
with the following famous paper:

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicHorAs METROPOLIS, ARIANNA W. RoseExBLUTH, MARsHALL N. RosENBLUTH, AND Aucusta H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND
EpwarD TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

we move each of the particles in succession according

to the following prescription:
X—X
~X+ab 3)
Y—Y+ ay,

where « is the maximum allowed displacement, which
for the sake of this argument is arbitrary, and £, and §&,
are random numbers§ between (—1) and 1. Then, after
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We then calculate the change in energy of the system
AE, which is caused by the move. If AE<Q, i.e,, if
the move would bring the system to a state of lower
energy, we allow the move and put the particle in its
new position. If AE>0, we allow the move with
probability exp(—AE/kT); i.e., we take a random
number £; between 0 and 1, and if & <exp(—AE/kT),
we move the particle to its new position. If £
>exp(—AE/kT), we return it to its old position.
Then, whether the move has been allowed or not, ie.,
whether we are in a different configuration or in the
original configuration, we consider that we are in a new
configuration for the purpose of taking our averages. So

Famous accept/reject criterion.

When a move is rejected: Count present configuration again!

Bernd A. Berg (FSU) Generalized Ensembles History Telluride 7/14/2008 4 /50



Notable early developments:

1959 Salsburg, Jacobson, Fickett, and Wood, J. Chem. Phys. 30,

65-72: An attempt to calculate the partition function by MCMC

using a method called in the modern language reweighting:
exp(—BE) — exp(—BE — ABE)=exp(—-F'E) .

As noticed by the authors their method is restricted to very small
lattices.

1963 Glauber, J. Math. Phys. 4, 294-307: discussion of heatbath and
other dynamics for the Ising model.

1967 McDonald and Singer, Discussions Faraday Soc. 43, 40-49:
Used reweighting to evaluate physical quantities over a small range
of temperatures.

1972 Valleau and Card, J. Chem. Phys. 37, 5457-5462: Multistage
sampling using overlapping bridging distributions.
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Extension:

Biometrika (1970), 57, 1, p. 97 97
Printed in Great Britain

Monte Carlo sampling methods using Markov
chains and their applications

By W. K. HASTINGS
University of Toronto

SuMMARY

A generalization of the sampling method introduced by Metropolis et al. (1953) is pre-
sented along with an exposition of the relevant theory, techniques of application and
methods and difficulties of assessing the error in Monte Carlo estimates. Examples of the
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Arbitrary distributions 7:

2-2. Construction of the transition matriz

In order to use this method for a given distribution =, we must construct a Markov chain P
with = as its stationary distribution. We now describe a general procedure for doing this
which contains as special cases the methods which have been used for problems in statistical
mechanics, in those cases where the matrix P was made to satisfy the reversibility condition
that for all  and j

T3 Pi; = TiDise (4)
The property ensures that X, p;; = 7;, for all j, and hence that 7 is a stationary distribution
of P. The irreducibility of P must be checked in each specific application. It is only necessary
to check that there is a positive probability of going from state 7 to state j in some finite
number of transitions, for all pairs of states ¢ and j.
We assume that p,; has the form

Dy = Qo (E+J), (5)
with
Py =1— X Dy,
i

where Q = {g;;} is the transition matrix of an arbitrary Markov chain on the states
0,1,...,8 and a;; is given by
gy = — 6)
i3 9, )
142224
;95
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where s;;is a symmetric function of ¢ and j chosen so that 0 < «;; < 1for all; and j. With this
form for p;; it is readily verified that m;p;; = m;p;;, as required. In order to simulate this
process we carry out the following steps for each time #:

(i) assume that X(f) = ¢ and select a state j using the distribution given by the ¢th
row of Q;

(ii) take X(t+ 1) = j with probability o;; and X(t+1) = ¢ with probability 1—a,;.
For the choices of s;; we will consider, only the quantity (7;9;;)/(7;9;;) enters into the
simulation and we will henceforth refer to it as the test ratio.

Reversibility conditions: Detailed balance.
Irreducibility: Ergodicity.
Normalization of the distribution 7; drops out.

Metropolis updating is a special case:

14 590 for T >1 = M=1

sM — 7 gji TiPjj IIJ\/I ’q
u 1 W f T 9gji __ Tgji
r 1 = of =
Tiqij © TiPij < @jj miqij

which goes for g;; # gji sometimes under the name biased Metropolis
updating.

Bernd A. Berg (FSU) Generalized Ensembles History Telluride 7/14 /2008 8 /50



Symmetry:
M 1 for :—JI >1,

Y 7 Y % for % <1.

i

Boltzmann distribution:

i = exp(—BE;) = Metropolis paper.
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Umbrella Sampling

Torrie and Valleau, Chem. Phys. Lett. 28 (1974) 578: estimation of
free energies by sampling on distributions designed for this purpose
(no reference to Hastings). Further Elaboration:

A Monte Carlo method for obtaining the interionic
potential of mean force in ionic solution
G. N. Patey and J. P. Valleau

Lash Miller Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada M5S 141
(Received 28 April 1975)

Since we want to explore a wider region of ionic separations, we used
a modified importance sampling scheme. The configuration were
chosen with a frequency proportional to w(ri2) exp(—U/kT), where
the weighting function w(ri2) was chosen to spread the sampling over
the desired range of ri. ... Accepted or rejected depending on the

ratio , , U U
m_ w(ri,) exp (_ — ) .
T w

kT
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J. Comp. Phys 23, 187-199 (1977):

Nonphysical Sampling Distributions in
Monte Carlo Free-Energy Estimation: Umbrella Sampling

G. M. TORRIE AND J. P. VALLEAU

Lash Miller Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada
Received May 7, 1976; revised June 16, 1976

The free energy difference between a model system and some reference system can
easily be written as an ensemble average, but the conventional Monte Carlo methods of
obtaining such averages are inadequate for the free-energy case. That is because the
Boltzmann-weighted sampling distribution ordinarily used is extremely inefficient for the
purpose. This paper describes the use of arbitrary sampling distributions chosen to facilitate
such estimates. The methods have been tested successfully on the Lennard—Jones system

. statistical properties such as the entropy and free energy, because
they cannot be expressed as ensemble averages, have not been so
easily accessible. The conventional technique has been numerical
integration, ... . This somewhat cumbersome method is least efficient
or altogether unworkable when the system undergoes a phase
transition, because of the difficulty of defining a path of integration on

which the necessary ensemble averages can be reliable measured,
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In the calculations described in the following sections weighting functions were used
which brought about sampling of a range of 4U* up to three times that of a conven-
tional Monte Carlo experiment, allowing accurate determination of values of f(4U*)

T T T T T. T

0.06— N=32 -
No¥v =085 .

L kT/e-274 ; : A

| 1 L Ao
-440 -430 —420 =410 =400 -390 -380
. Ug/€

Fic. 1. Probability density functions for U, in a 32-particle soft-sphere fluid at k7/e = 2.74,
No*/V = 0.85. Solid line, f,, , the biased probability density. Dotted line, f; , the unbiased probability
density obtained by reweighting f,, . Broken line, relative values of f{(Us/€) exp{ — U4'kT) normalized
to unity.
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Superficially, the most serious limitation of the sampling techniques described here
may appear to be the lack of a direct and straightforward way of determining the
weighting function to use for a given problem. Instead, w(q") must be determined by a
trial-and-error procedure for each case, often beginning with the information avail-
able from the distribution in a very short Boltzmann-weighted experiment which is
then broadened in stages through subsequent short test runs with successively greatef
bias of the sampling. What this rather inelegant procedure lacks aesthetically is more
than compensated by the efficiency of the ultimate umbrella-sampling experiment.

Summary:

1. Weighting functions w(qi, ..., qy) depend on (generalized)
coordinates.
2. Determination via trial and error.

Conclusion eleven years later (Li and Scheraga, J. Mol. Struct.
(Theochem) 179, 333-352 (1988)):

The difficulty of finding such weighting factors has prevented wide
applications of umbrella sampling.
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Umbrella Sampling in Practice
J. Am. Chem. Soc. 107, 154-163 (1985):

Theoretical Examination of the Sy2 Reaction Involving
Chloride Ion and Methyl Chloride in the Gas Phase and
Aqueous Solution

Jayaraman Chandrasekhar,* Scott F. Smith, and William L. Jorgensen*

Contribution from the Department of Chemistry, Purdue University,
West Lafayette, Indiana 47907. Received May 29, 1984

Simulations with importance sampling were carried out over
six windows, corresponding to different choices of the umbrella
potential, #’. As in previous applications, harmonic forces centered
at different values of r, were used in the present study.!* The force
constants were chosen to be progressively smaller when going from
the transition-state region to the products region, reflecting the
expected steepness of the energy profile. In addition to the
harmonic force, it was found necessary to add an exponential
biasing potential to ensure uniform sampling, especially near the
transition state. The final choice of the umbrella potential is given
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PROBABILITY OF CONFIGURATION
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Gas-Phase vs. Solution Energy Profiles. The unnormalized
solute distributions, P,(r.), for the six windows are shown in Figure
5. Smooth Gaussian distributions with widths inversely pro-
portional to the harmonic force constants, k;, would be obtained
if the true relative energy of the solution is exactly counterbalanced
by the exponential term in the biasing potential (eq 9). This is
roughly the case for windows 2—6, whose P,(r.) are smooth dis-
tributions spanning increasing ranges of .. The distribution for
the first window has two peaks, indicating that the variation in
the pmf in this region is not perfectly compensated by the ex-
ponential biasing term. Nevertheless, the region from ». = 0 to
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Summary:
Tedious patching of umbrella potentials.

Let's now backup a bit in time to follow another line of developments:
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Binder's Method for Estimating Interface Tensions
Binder, Phys. Rev. A 25, 1699-1709 (1982).

Simulations with periodic boundary conditions.

1 Pmin
From equal heights double peaks: F} = — [(0-1) In <PLmax> .
L
-— Plp’(D)
| N\~
| I
[ L
| (@)
- |

By B By P

First results with canonical simulations remained pitiful. Reason:
P™" is exponentially suppressed in the canonical ensemble.
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Chandler: Introduction to Modern Statistical Mechanics, Oxford
University Press 1987. Chapter 6.3: Non-Boltzmann Sampling:

Non-Boltzmann sampling is a powerful tool when the reference or
unperturbed energy, E,EO), creates a trajectory that is close to that of
E,. Comment: There is no need for the trajectories to stay close.

Non-Boltzmann sampling can also be useful in removing the
bottlenecks that create quasi-ergodic problems and in focusing
attention on rare events. Comment: This is on the right track.

The practice: To illustrate this methodology, we consider ... the
computation of the free energy function, A(M). This function is
defined for the Ising magnet by

exp[ BA M)} ZA (M MZS,) exp (—BE,) ,

where A(x) is the Kronecker delta ... .
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Clearly,

exp |~ BA(M)| o P(M) = <A (M - MEN:S,->> ,
i=1

where P(M) is the probability of observing the Ising magnet with
magnetization M. ... if we consider the situation of broken symmetry
(i.e., when T < T,), and plan to compute A(M) for a wide range of
M values, we immediately encounter a serious problem ... A(M) is a
bistable function of M, ... visitation of states with M = 0 is an
infrequent event ...

The method of umbrella sampling, however, avoids this difficulty. We
chose a set of umbrella or window potentials

N
W, = 0, for Mi—w/2<p) <M <M—i+w)/2
j=1
= 00, otherwise.
/Z\(M) is determined in each window to within an additive constant
., which must be adjusted from one window to the next, ...
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Let 7 denote the required computer time to acquire such (accurate)
statistics in each window. ... Note that

TO(WZ.

Therefore, the total computation time required to determine 74(/\/1) by
the method of umbrella sampling is

topuy X nW2 .

Now, how much time would it have taken if we did not use this
method? As a lower bound, let us assume that A(M) does not vary
more than a few kg T over the entire range of M. The size of this
range is nw. Therefore, the time to sample this range is proportional
to (nW)2 = ntgopyu. Hence, without the windows, the computation
time would be n times longer than that with the n windows.

Exercise BB1: What is wrong with Chandler’'s argument?
(Replacing Exercise 6.8 of the book.)
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The advantage (i.e., lower computation time) of umbrella sampling is,
of course, even greater than this when regions of M have relatively
high values of A(M) and thus relatively low probabilities.

Comment: This is the (only) major advantage!

400 spin Ising magnet, ... 10 windows were used between M = 0 and
M = 400pu. From the figure (next transparency):

Pmin

~ 14 -7
Wwe =8.3x10 .

Comment: Configurations sampled, which are in Boltzmann
simulations suppressed by 6 to 7 orders of magnitude.

No mention of Binder or any attempt to calculate the interface
tension (known exactly since Onsager's 1944 solution of the

2D Ising model). Umbrella potentials by Tedious patching of windows
remains (in Chandler's example chosen to be constant).

Bernd A. Berg (FSU) Generalized Ensembles History Telluride 7/14 /2008 21 / 50



Multicanonical and Multimagnetical Simulation

Also in 1987: Umbrella sampling in Chandler’s version was discovered
independently by Bhanot and collaborators, and used in a series of
papers: Phys. Rev. Lett. 59 (1987) 803 and references given therein.

Due to the tedious patching of windows their simulations remained
confined to rather small lattices.

This changed with

VOLUME 68, NUMBER 1 PHYSICAL REVIEW LETTERS 6 JANUARY 1992

Multicanonical Ensemble: A New Approach to Simulate First-Order Phase Transitions

Bernd A. Berg @@ and Thomas Neuhaus
W Fakultat fiir Physik, Universitat Bielefeld, D-4800 Bielefeld, Federal Republic of Germany
D Supercomp Comp ions Research Institute, Tallah Florida 32306
(Received 19 July 1991)
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The multicanonical MC algorithm samples config-
urations with the weight

PMC(S) ~o “HHPS) (or Sk < § < SFF! 7)

instead of sampling with the usual Boltzmann factor
PE(S) ~exp(BfS) corresponding to the canonical ensem-
ble. Here we partitioned the total action interval 0
<S<2V into k=0,... ,N (N+1 odd) intervals I
=(Sk,Sf*'). The idea of the multicanonical MC algo-
rithm is to choose intervals [; and values of ,B,’f and af at
the pseudocritical point B in such a way that the result-
ing multicanonical action density 2, (S) has an approxi-
mately flat behavior for values of the action in the inter-
val [S/ ™4 §2™M2]: that is to say, configurations dominat-
ed by the interface are no longer exponentially suppressed
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... In practice the appropriate choice of the parameters in Eq. (7) is
obtained by making from the given systems an FSS prediction of the
density distribution Py (S) for the next larger system. A second run
may then be performed with optimized parameters [Citation End].

Changes compared to umbrella sampling:
No windows anymore, all in one ensemble.

Weights are not umbrella potentials w(qi, ..., gn), but functions of
the energy: w(S), here S energy.

Weights are obtained in one (plus one) step(s).
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2D 10-state Potts model:

1 1 1 1 1 1 1 1 1 1
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Energy per spin histogram

allows then for accurate estimates of interface tension

100
P (es)
101

|

Ll

102

i

10

Lol

104

i
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Back to Chandler's Case

PHYSICAL REVIEW B VOLUME 47, NUMBER 1 1JANUARY 1993-1

Simulation of an ensemble with varying magnetic field: A numerical determination
of the order-order interface tension in the D =2 Ising model

B. A. Berg and U. Hansmann
Department of Physics, The Florida State University, Tallahassee, Florida 32306
and Supercomputer Computations Research Institute Tallahassee, The Florida State University, Tallahassee, Florida 32306

T. Neuhaus
Fakultdt fiir Physik, Universitit Bielefeld, D-4800 Bielefeld, Federal Republic of Germany
(Received 13 September 1991; revised manuscript received 30 June 1992)

In analogy with a recently proposed multicanonical ensemble we introduce an ensemble where the
partition function is simulated with a term in the action containing a varying magnetic field. Using this
ensemble we demonstrate on lattices with periodic boundary conditions that it is possible to enhance the
appearance of order-order interfaces by many orders of magnitude. To perform a stringent test of the
method we consider the D =2 Ising model at 8=0.5 and simulate square lattices up to size 100X 100.
By a finite-size scaling analysis, the order-order interface tension per unit area is obtained. Our best
infinite-volume extrapolation is in excellent agreement with Onsager’s exact result.
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FIG. 1. Boltzmann probability distributions P; (M) for the
magnetization.

L = 10, 20, 30, 40, 50, 60, 74, 80, 100.
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FIG. 4. (a) Configuration at
m=~—0.9 on the 100X 100 lat-
tice.  (b) Configuration at
m=~—0.6 on the 100X 100 lat-
tice. () Configuration at
m=~—0.4 on the 100X100 lat-
tice. (d) Configuration at m =0
on the 100X 100 lattice.
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3D Ising model
Berg, Hansmann, and Neuhaus, Z. Phys. B 90 (1993) 229-239

D=3 =0.2439
oF NS 8° —
e N2
-50 + m
-100 - :
-150 -
S S S S O ST S S S S S S |
-1 -5 0 5 1
m=M/V

109 improvement over simulation with Boltzmann weights!
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New Horizons

VOLUME 69, NUMBER 15 PHYSICAL REVIEW LETTERS 12 OCTOBER 1992

New Approach to Spin-Glass Simulations
Bernd A. Berg ") and Tarik Celik @
D Supercomputer Computations Research Institute, Tallahassee, Florida 32306

@ pepartment of Physics, The Florida State University, Tallahassee, Florida 32306
(Received 13 April 1992)

We present a recursive procedure to calculate the parameters of
the recently introduced multicanonical ensemble and explore the
approach for spin glasses.

We suggest that in a large class of situations, in particular those
where canonical simulations face severe ergodicity problems, it is
more efficient to reconstruct the Gibbs ensemble form a simulation
of a multicanonical ensemble [7] than to simulate is directly.

[Citation End].
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lllustration of Rugged Free Energy Landscapes

Distribution of the 2D Ising Model Magnetization versus Temperature.

Bernd A. Berg (FSU) Generalized Ensembles History Telluride 7/14 /2008 34 / 50



One Edwards-Anderson Ising (EAI) Spin Glass Realization:

Parisi order parameter distribution versus temperature.
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Exercise BB2: Explain why patching windows cannot work well for
exploring these free energy landscapes.

Berg-Celik concluding remarks:

Our results make clear that the multicanonical ap-
proach is certainly a relevant enrichment of the options
one has with respect to spin-glass simulations. The simi-
larities of spin glasses to other problems with conflicting
constraints [13] suggest that multicanonical simulations
may be of value for a wide range of investigations: op-
timization problems like the traveling salesman, neural
networks, protein folding, and others.

Jidlich Conference, Berg, Int. J. Mod. Phys. C 3 (1992) 1083-1098:
Review up to then.
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Prediction of Peptide Conformation by Multicanonical
Algorithm: New Approach to the Multiple-Minima Problem

Ulrich H.E. Hansmann't and Yuko Okamoto®*f

1Department of Physics and Supercomputer Computations Research Institute, The Florida State University,
Tallahassee, Florida 32306, and *Stanford Linear Accelerator Center, Stanford University, Stanford, California
94309

Received 27 January 1993; accepted 27 May 1993
We apply a recently developed method, the multicanonical algorithm, to the problem of tertiary structure
prediction of peptides and proteins. As a simple example to test the effectiveness of the algorithm, met-
enkephalin is studied and the ergodicity problem, or multiple-minima problem, is shown to be overcome by
this algorithm. The lowest-energy conformation obtained agrees with that determined by other efficient

methods such as Monte Carlo simulated annealing. The superiority of the present method to simulated
annealing lies in the fact that the relationship to the canonical ensemble remains exactly controlled. Once

Their review The Generalized-Ensemble Approach for Protein Folding
Simulations, Ann. Rev. Comp. Phys. 6, 129-157 (1999) coined the
name Generalized Ensembles.
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Poly-alanine:

Hansmann and Okamoto, J. Chem. Phys. 110, 1267-1276 (1999);
erratum 111, 1339.
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MUCA Performance
Slowing down in units of updates:

1. Optimum: oc N? perfect random walk in the energy.
2. 2D 10-state Potts model (transition range): Effective
oc N2325(10) observed (Berg and Neuhaus 1992).

3. 2D EAl spin glass: oc N32(2) observed (Berg and Celik 1992).
Still exponential slowing down expected due to hidden energy barriers.
Even for simple first order phase transitions: Hager and Neuhaus, J.
Stat. Phys. 113 (2003) 47-83: <«

Transitions
only through
rare or suppressed

configurations.

Bernd A. Berg (FSU) Generalized Ensembles History Telluride 7/14 /2008 39 / 50



Replica Exchange Method and Expanded Ensembles

The late 1980s and early 1990s saw a flurry of innovative activities on
MCMC methods.

Swendsen and Wang, Phys. Rev. 58 (1987) 86-88; Wolff Phys. Ref.
Lett. 62 (1989) 361-363: Cluster algorithms.

Ferrenberg and Swendsen, Phys. Rev. Lett. 61 (1988) 2635-2638, 63
(1989) 1658: Popularized histogram reweighting of canonical MCMC
simulations and focused them on determinations of finite-Volume
maxima of divergent quantities in studies of phase transitions.

Ferrenberg and Swendsen, Phys. Rev. Lett. 63 (1989) 1195-1198;
Alves, Berg and Villanova, Phys. Rev. B 41 (1990) 383: Multi-
histogram reweighting.

Question: Which of the earlier references relate to reweighting?
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Replica Exchange:

Swendsen and Wang, Phys. Rev. 57 (1986) 2607-2609: Introduced
(too) general replica exchange method.

Frantz, Freemann, and Doll, J. Chem. Phys. 93 (1990) 2769-2784:
Jump-walking feeds replica from a high- into a low-temperature
simulation. Does not fulfill balance (not replica exchange).

Geyer, in Proceedings of the 23rd Symposium on the Interface,
Keramidas (editor), Interface Foundation, Fairfax, Virginia (1991)
156-163: Multiple Markov chains (the same as replica exchange).

Hukusima and Nemoto, J. Phys. Soc. Japan 65 (196) 1604-1608:

Replica exchange. Often called parallel tempering when temperatures

are exchanged.

Hansmann, Chem. Phys. Lett. 281 (1997) 1267-1276: First
application to a biomolecule (Met-Enkephalin).
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Parallel Tempering:

For B1 < [ < ... < [3, consider the joint partition function

3/2
7= H {H (2m m; j(VE; Tx) /d3x,-k exp [—ﬂk UGS ... Ty }}

of a molecular system, where the momenta are integrated out. Swaps
between (normally neighboring) temperatures are proposed and
accepted with the Metropolis probability

Pacpt = min {1, exp [+(5 — ) (U(HE,....F) = UG, ...70) | }

so that balance holds. The differences G, — 3, have to be chosen
small enough to ensure reasonable acceptance rates.

Well-suited for parallel processing.
Other advantages: To be discussed.

Generalized ensembles can be exchanged as well,
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Do not confuse with

Expanded Ensembles:

Lyubartsev, Martsinovski, Shevkanov, and Vorontsov- Velyaminov,
J. Chem. Phys 96 (1992) 1776-1783.

Marinari and Parisi, Europhys. Lett. 19 (1992) 451-458: Simulated
tempering.

Weights
exp(—fm Ex + gm), m=1,...,M, k configuration,
and m is considered a new dynamical variable. Moves
m—-m=1

are proposed and rejected /accepted according to Metropolis. The
constants g, need to be adjusted to get reasonable acceptance rates.
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How to overcome a free energy barrier?

Low T

1l

1. Flatten the barrier. This requires that the barrier is explicit in a
known reaction coordinate. Probabilities of transition states are
then greatly enhanced.

2. Jump the barrier via parallel or simulated tempering. Initial
low-temperature configuration(s) problematic! Probabilities of
transition states stay unchanged (tiny). Parallel tempering will
not estimate entropy and free energy across the barrier.

P(E)
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Exploration of low temperature configurations in a rugged free energy
landscape:

High T Low T
E

If there are no major barriers in the energy variable, all of the
introduced methods explore all low temperature branches and yield
their relative probabilities as well as the global energy minimum.

Due to barriers in M: Large performance enhancement versus low
temperature Boltzmann simulations.
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Example (left over from my last MCMC course at FSU):

Parallel tempering with 8 processes for the 2D 10-state Potts model
on a 20 x 20 lattice. Some parameters:

hg =0, Bmin = 0.65, Bmax = 0.75, (note B = 0.71303...).

Parallel Tempering

Canonical Simulation

g Tint (E)

Tint(M) Tint(E)

Tint(M)

0.7133.. | 761(21)

434(13) x 10 | 1199 (51)

181(10) x 10?

0.7261... | 54.0(4.9)

611(19) x 10 | 13.63(22)

979 (48) x 10

Units are sweeps. Assembled statistics: 10 x 220 per replica for PT,
10 x 220 cano at 8 = 0.7133..., 103 x 2?2 cano at 3 = 0.7261... .

Exercise BB3: Explain why the integrated autocorrelation times
Tint (E) and 7int(M) behave so differently.
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Summary and Conclusions:

This talk presented use of generalized ensembles in MCMC
simulations close to the chronological order of their development.
Obviously, my mini-review cannot be complete, | had to make
omissions and may have overlooked some relevant papers.

A message is that mastering simulation methods is not the trivial part
of a biophysical, chemical or physical MCMC study. Astronomically
large efficiency factors can float around between making it right or
wrong.

There have been hundreds of papers refining and improving the
methods outlined here. It is practically impossible to follow up on all
of them, all the more to verify them. Let me just pick four points:
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1. Wang-Landau, PRL 86 (2001) 361-363: Introduced a now widely
used algorithm, which can be employed as a recursion to get
working estimates of the MUCA weights.

2. Trebst, Huse and Troyer, PRE 70 (2004) 046710: Optimized the
MUCA weight with respect to cycling times. Improvement
factors appear to be around 3 to 5 compared to relying on flat
histograms.

3. Hamiltonian replica exchange, alchemical transitions and related
ideas have been studies by a number of authors, including Uli
Hansmann and Wei Yang, who are here and may tell you more.

4. Data analysis problems should not be neglected. For instance,
reweighting often requires a logarithmic coding, because factors
just get too large to be allowed in Fortran or C. That is a good
occasion to advertise my book for your library:
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Really huge improvement will get attention, because they would be
enabling methods for simulations which otherwise cannot be done.
However, attention is not enough. Required are independent
verifications, which too often never happen.

Where are we stuck?

Apparently at many fronts, but we focus here on the simulation of
well-defined models (all-atom in biophysics, classical spin glasses in
statistical physics, and so on).
1. Obviously there are often hidden barriers and we are unable to
find reaction coordinates in which the barriers become explicit.
2. The optimal performance of the discussed methods is limited by
a diffusive process. For large systems that can still be far too
slow. In some situations that is greatly improved by the
collective updating of cluster algorithms, but their application
range has remained fairly limited.

Challenges: Many. Combinations with MD simulations as for instance
pioneered by Wei Yang appear to me one of the promising roads.
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