The multicanonical MC algorithm samples configurations with the weight

$$\mathcal{P}_L^{\text{MC}}(S) \sim e^{(\alpha_L^k + \beta_L^k S)} \text{ for } S_L^k < S \le S_L^{k+1}$$
 (7)

instead of sampling with the usual Boltzmann factor $P_L^B(S) \sim \exp(\beta_L^c S)$ corresponding to the canonical ensemble. Here we partitioned the total action interval 0 $\leq S \leq 2V$ into k = 0, ..., N (N+1 odd) intervals I_k $=(S_L^k, S_L^{k+1}]$. The idea of the multicanonical MC algorithm is to choose intervals I_k and values of β_L^k and α_L^k at the pseudocritical point β_L^c in such a way that the resulting multicanonical action density $\mathcal{P}_L(S)$ has an approximately flat behavior for values of the action in the interval $[S_L^{1,\text{max}}, S_L^{2,\text{max}}]$; that is to say, configurations dominated by the interface are no longer exponentially suppressed