PHZ3113: Solution for Homework 11.

1. For small oscillation we have derived the Euler-Lagrange equations, which read

in matrix notation )
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This is solved by the exponential ansatz (physical is the real part of the solution):
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2. For the w, eigenvalue we have
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Therefore, the solutions (real part) can be written
o) = o(t) +o-(1),
Y(t) = —V2¢.(t) +V2¢_(1).
with
¢+(t) = Aycos(wyit) + Bysin(wit),
o_(t) = A_cos(w_t)+ B_sin(w_t),

3. The four constants are determined by the four initial value, e.g., ¢y, gﬁo, Yo, @/}0
at time t = 0:

po = AL +A_, Yo = V2 (—AL+A),
¢ = wpBi+w B, Yy = V2 (—wiBy+w_B_),
which gives
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