Mathematical Physics — PHZ 3113 Curl; Vector Integration Homework (February 7, 2013)

The dual of the Euclidean electromagnetic field tensor is defined by

$$*F_{\alpha\beta} = \frac{1}{2} \epsilon_{\alpha\beta\mu\nu} F_{\mu\nu} \tag{1}$$

where the indices run from 1 to 4, the Einstein convention is used and $F_{\mu\nu}$ is an antisymmetric (i.e., $F_{\mu\nu} = -F_{\mu\nu}$) rank two tensor

$$(F_{\mu\nu}) = \begin{pmatrix} 0 & F_{12} & F_{13} & F_{14} \\ -F_{12} & 0 & F_{23} & F_{24} \\ -F_{13} & -F_{23} & 0 & F_{34} \\ -F_{14} & -F_{24} & -F_{34} & 0 \end{pmatrix}.$$

- 1. Calculate the elements of ${}^*F_{\alpha\beta}$ in terms of the independent elements of $F_{\mu\nu}$ and write ${}^*F_{\alpha\beta}$ as a matrix.
- 2. The electromagnetic field tensor can be written in form of derivatives of a 4-potential

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}. \tag{2}$$

Use this expression to proof the homogeneous Maxwell equations in their form

$$\partial_{\alpha} * F_{\alpha\beta} = 0. (3)$$

Remark: Therefore (2) implies that no magnetic monopoles exist, because (3) includes (upon identification of the \vec{E} and \vec{B} fields) the relation $\nabla \cdot \vec{B} = 0$.