Vectors and 2D Motion

Cartesian and polar coordinates (1).
Length of a 2D vector; angle ϕ :

$$
r=\sqrt{x^{2}+y^{2}}, \quad \phi=\arctan (y / x)
$$

Components of a velocity:

$$
v_{x}=v \cos (\phi), \quad v_{y}=v \sin (\phi)
$$

Not that CAPA wants asin, acos, atan and gives wrong when useing arc instead.

Adding vectors (2):

$$
\vec{v}_{3}=\vec{v}=\overrightarrow{v_{1}}+\overrightarrow{v_{2}}
$$

with \vec{v}_{1} along the positive x-axis. Maximum and minimum magnitudes of \vec{v} :

$$
v_{\max }=v_{1}+v_{2}, v_{\min }=v_{1}-v_{2} .
$$

Vectors and 2D Motion

Inexperienced pilot (3).

Speed over ground v; speed in still air v_{y} :

$$
v=\frac{r}{t}, \quad v_{y}=\frac{y}{t} .
$$

Let the speed in still air now v (our previous v_{y}). Direction angle θ :

$$
v_{x}=v \sin (\theta) \Rightarrow \theta=\arcsin \left(v_{x} / v\right) .
$$

Ferry boat (4).
Acceleration, Velocity and Displacement Vector (5).
Velocity from acceleration \vec{a} and initial velocity \vec{v}_{0} at time $t=0$:

$$
\vec{v}=\vec{v}_{0}+\vec{a} t, \quad v=\sqrt{v_{x}^{2}+v_{y}^{2}} .
$$

Angle with the convention: 0 to π for $v_{y}>0,0$ to $-\pi$ for $v_{y}<0$. So,

$$
\alpha=\operatorname{sign}\left(v_{y}\right) \arccos \left(v_{x} / v\right), \quad \operatorname{sign}\left(v_{y}\right)= \pm 1 .
$$

Vectors and 2D Motion

Position vector at time t with initial position \vec{r}_{0} :

$$
\vec{r}=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}, \quad r=\sqrt{r_{x}^{2}+r_{y}^{2}} .
$$

Angle as before:

$$
\alpha=\operatorname{sign}\left(r_{y}\right) \arccos \left(r_{x} / r\right), \quad \operatorname{sign}\left(r_{y}\right)= \pm 1
$$

Velocity in the $x y$ plane (6).
When particle is moving in x direction:

$$
v_{y}=\frac{d r_{y}}{d t}=0 \Rightarrow t \Rightarrow v_{x}=\frac{d r_{x}}{d t}
$$

When particle is moving in y direction:

$$
v_{x}=\frac{d r_{x}}{d t}=0 \Rightarrow t \Rightarrow v_{y}=\frac{d r_{y}}{d t}
$$

