Newton's Laws with Friction - 1
Car on speedway (1):

$$
a_{x}=\frac{v^{2}}{r}, \quad a_{x} \cos (\theta)=g \sin (\theta) .
$$

Frictional force (2):

$$
\mu_{k} g=a, \quad a=\frac{v}{t}, \quad d=\frac{a}{2} t^{2} .
$$

Inclined plane (4). Force due to friction:

$$
F_{\mu}=\mu W \cos (\theta)
$$

Up an inclined plane with friction (5).
Distance:

$$
v=v_{0}-a t, \quad a=g \sin (\theta)+\mu_{k} g \cos (\theta), \quad d=\frac{v_{0}}{2} t
$$

Angle for minimized distance:

$$
0=\frac{d}{d \theta} \frac{\text { const }}{f(\theta)}=-\frac{\text { const }}{f^{2}} \frac{d f}{d \theta}
$$

Newton's Laws with Friction - 2

Moving an Iceblock (6).
Maximum speed:

$$
\begin{gathered}
F_{x}^{\min }=F^{\min } \cos (\theta), \quad F_{y}^{\min }=F^{\min } \sin (\theta) \\
F_{x}^{\min }=F^{\min } \cos (\theta)=\mu_{s}(?)
\end{gathered}
$$

Minimization then similar as in previous problem.
Gravity Pulling Blocks (7):

$$
M_{2}(g-a)=M_{1}(?)
$$

