Work and Energy I-1

Work-Kinetic Energy (1): Convert units to $k J$.

$$
E_{k}=\frac{1}{2} m v^{2} .
$$

Should E_{k} be entered as a positive or negative quantity?
Horse Power (2): Convert units to $k J$ and W (Watt, not to be confused with W for work).

$$
W=F_{x} L, \quad P_{a v}=\frac{W}{t}
$$

Cartesian dot product (3):

$$
W=F_{x} \triangle R_{x}+F_{y} \triangle R_{y}+F_{z} \triangle R_{z}
$$

Work done by a variable force (4): $\int_{0}^{x_{0}} F d x$.

Work and Energy I-2

Force from a position graph (5).
One segment $x_{i} \rightarrow x_{i+1}$:

$$
W_{i}=F_{i}\left(x_{i+1}-x_{i}\right)+\frac{1}{2}\left(F_{i+1}-F_{i}\right)\left(x_{i+1}-x_{i}\right) \text { and } W=\sum_{i} W_{i}
$$

Velocity:

$$
W=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)
$$

Block-spring (6):

$$
W=\frac{k}{2} x^{2}=F_{\mu_{k}} \Delta x
$$

Bungee Cord (7):

$$
W=-\int_{0}^{L_{0}} F d x
$$

