Work and Energy III-1

Rock Climber (1): Energy conservation.

$$
E=m g h=\frac{k}{2} x^{2}, \quad h=? ? ? \neq L!.
$$

Loop the Loop (2):

$E_{A}=$ Difference of the potential energies.
Downward acceleration:

$$
a=\frac{v^{2}}{R}, \quad E_{A}=\frac{m}{2} v^{2} .
$$

Minimum height:

$$
h_{\min } g M=E_{\text {potential }}(A)+E_{\text {kinetic }}(A) \text { with } g=\frac{v^{2}}{R}
$$

Work and Energy III-2

Ball on a Swing (3):

1. Find v_{x} from kinetic energy, then $R=v t$ with t from $g t^{2} / 2=h$.
2. $v=\sqrt{v_{x}^{2}+v_{y}^{2}}$.

Block and Loop the Loop (4):
$W=E_{\text {kinetic }}-E_{\text {potential }}$ with $E_{\text {kinetic }}>0$.
Swinging Ball (5):

1. v from kinetic energy. 2. v from new kinetic energy at $2 r$.

Trunk up an Incline (6):

$$
\begin{gathered}
P_{I}=P \cos (\theta), \quad W=P_{l} d, \quad F_{N}=P \sin (\theta)+m g \cos (\theta) \\
W_{\mu}=-F_{\mu} d, \quad W_{g}=\ldots
\end{gathered}
$$

