Gravity-1

Orbiting Planet (1):

$$
a=\frac{M G}{R^{2}}=\frac{v^{2}}{R}, \quad T=\frac{2 \pi R}{v} .
$$

Orbiting Satellite (2). Kepler's 3rd law:

$$
\frac{M G}{4 \pi^{2}} T^{2}=R^{3}, \quad v^{2}=\frac{M G}{R} .
$$

Gravitational Acceleration (3):

$$
a=\frac{G M}{R^{2}}, \quad R_{\text {Earth }}=6.37 \times 10^{6} \mathrm{~m}
$$

Gravity-2

Escape Velocity (4).

Energy conservation:

$$
\frac{1}{2} m v_{f}^{2}=\frac{1}{2} m v_{i}^{2}-\frac{m M G}{R} .
$$

Two masses (5):

$$
a_{1}=\frac{M_{2} G}{d^{2}}, \quad \triangle t=?, \quad v_{f}=?
$$

Tidal Force (6):

$$
\triangle F=\frac{m M m G}{(r-R)^{2}}-\frac{m M m G}{(r+R)^{2}}=? \quad(\operatorname{expand})
$$

Taylor expansion:

$$
f(x)=f(0)+f^{\prime}(0) x+\ldots . \text { Let } f(x)=\frac{1}{(r \pm x)^{2}}, \quad x=R
$$

Gravity-3

Denote the distance of one of the star from the center of the triangle by R,

$$
\frac{L}{2}=R \cos \left(30^{\circ}\right)
$$

and calculate the force towards the center. Then $a=F / M$, $a=v^{2} / R$, and $T=2 \pi R / v$.

