## Rotational Dynamics - 1

Bicycle (1):

$$
\omega=\frac{v}{r} \operatorname{rad}, \quad T=\frac{2 \pi \mathrm{rad}}{\omega}
$$

Belt Drive (2): Use relation of frequencies

$$
f_{a} r_{a}=f_{c} r_{c}, \quad \omega_{a}=2 \pi f_{a} \mathrm{rad} / \mathrm{rev}, \quad \alpha_{a} t=\omega_{a} .
$$

Spinning Wheel and Arrow (3). Times have to agree:

$$
\frac{L_{\text {arrow }}}{v_{\text {arrow }}}=\frac{L_{\text {wheel }}}{v_{\text {wheel }}}, \quad L_{\text {wheel }}=\frac{R}{8}
$$

Cyclist (4).

$$
\theta=\alpha \frac{t^{2}}{2}, \quad \omega=\alpha t, \quad d=\theta r / \mathrm{rad}
$$

## Rotational Dynamics - 2

Rotational Variables (5). Use just numbers. Fix units on output. Given is $\theta(t)$. Then

$$
\omega(t)=\frac{d \theta}{d t}, \quad \alpha=\frac{d \omega}{d t}, \quad \bar{\alpha}=\frac{\omega_{2}-\omega_{2}}{t_{2}-t_{1}} .
$$

Crumb on rotating table (6):

$$
T=\frac{\mathrm{rev}}{f}, \quad v=\frac{2 \pi r}{T}, \quad a=?
$$

Torque on a Door (7):

$$
\tau=r F \sin (\theta)
$$

