Rotational Energy and Torques - 1

Three masses on equilateral triangle (1):

$$
R=\frac{L}{2 \cos (\pi / 6)}, \quad \cos (\pi / 6)=? ; \quad R=\frac{L}{2}
$$

Disk with Hole (2). Solid disk:

$$
I=\frac{1}{2} M R^{2}, \quad M=\pi R^{2} \rho
$$

Small disk:

$$
I=\frac{1}{2} m r^{2}+m r^{2}, \quad m=\pi r^{2} \rho, \quad r=R / 3
$$

Torque on a Merry Go Round (3):

$$
I=I_{\text {disk }}+I_{\text {kids }}, \quad \tau=I \alpha, \quad \alpha=\frac{\omega}{t}, \quad F=\frac{\tau}{R} .
$$

Rotational Energy and Torques - 2

Hoop Rolling up Hill (4):

$$
K=m g h, \quad K=\left(1+f_{\text {hoop }}\right) \frac{1}{2} m v^{2}
$$

Solid Sphere Rolling down the Ramp (5):

$$
K=\frac{1+f}{2} M v^{2}=M g h, \quad h=d ?, \quad ?=
$$

Mass pulling a Pulley (6):

$$
\Delta U=U-K \text { with } U=M_{b} g D \text { and } K=I_{p} \frac{\omega^{2}}{2}+M_{b} \frac{v^{2}}{2}
$$

Rolling around a Loop the Loop (7):

$$
v_{\min }^{2}=g R, \quad M g h_{\min }=(1+f) M \frac{v_{\min }^{2}}{2}+M g 2 R \Rightarrow h_{\min }
$$

