Oscillations - 1

Spring Constant (1): $\kappa=m \omega^{2}$.
Spring Block Oscillation (2): Take derivatives of

$$
x=x_{\max } \sin (\omega t)
$$

and use $\max [\sin (\omega t)]=1$.
Mass on Spring (3). New equilibrium position: $M g=k x_{0}$ with x_{0} amplitude. Lowest point in oscillation seen from starting point: $x_{\min }=2 x_{0}$. Frequency: $f=\omega /(2 \pi)$ in units $1 / s$ or Hz . Note: angular frequency ω in rad is not accepted.

Mass, Spring on Air Track (4):

$$
x=x_{\max } \cos (\omega t) \text { with } x_{\max } \text { and } T
$$

given.

Oscillations - 2

Spring Force (5):

$$
k=\frac{M_{2} g}{\Delta x} \quad \text { and } \quad \omega=\sqrt{\frac{k}{M_{1}}} .
$$

Spring Height Motion (6):

$$
x=\frac{M g}{k} .
$$

Block and Spring (7). The contact time is half (!) a period

$$
t=\frac{\pi}{\omega}, \quad \omega=? . \quad \text { Then } \quad \Delta x=v_{0} \omega
$$

