Oscillations - 1

Spring Constant (1): $\kappa = m \omega^2$.

Spring Block Oscillation (2): Take derivatives of

 $x = x_{\max} \sin(\omega t),$

and use max[sin(ωt)] = 1.

Mass on Spring (3). New equilibrium position: $Mg = k x_0$ with x_0 amplitude. Lowest point in oscillation seen from starting point: $x_{\min} = 2 x_0$. Frequency: $f = \omega/(2\pi)$ in units 1/s or Hz. Note: angular frequency ω in *rad* is not accepted.

Mass, Spring on Air Track (4):

 $x = x_{\max} \cos(\omega t)$ with x_{\max} and T

given.

Oscillations - 2

Spring Force (5):

$$k = \frac{M_2 g}{\bigtriangleup x}$$
 and $\omega = \sqrt{\frac{k}{M_1}}$.

Spring Height Motion (6):

$$x=\frac{Mg}{k}\,.$$

Block and Spring (7). The contact time is half (!) a period

$$t = \frac{\pi}{\omega}, \ \omega = ?.$$
 Then $\Delta x = v_0 \omega$.