Oscillations II - 1

Oscillations (1): Consider

$$
x(t)=A \cos (\omega t+\pi)
$$

and its derivatives with respect to time t.
Energy and Amplitude in simple Harmonic Motion (2):

$$
E_{\mathrm{tot}}=\frac{1}{2} M v_{\max }^{2}, \quad x_{\max }=\frac{v_{\max }}{\omega} .
$$

Spring and Rolling Sphere (or Cylinder) (3). Energy:

$$
U=\frac{1}{2} k x^{2}, \quad K=\frac{7}{10} M v^{2} \quad\left(\text { or } \quad K=\frac{3}{4} M v^{2}\right) .
$$

Angular velocity:

$$
0=k x \dot{x}+\frac{7}{5} M \dot{x} \ddot{x} \quad\left(\text { or } \frac{3}{2} M \dot{x} \ddot{x}\right) .
$$

Oscillations II - 2

Pendulum in an Accelerating Frame (4):

$$
T \sim \sqrt{\frac{1}{g \pm a}}
$$

Pendulum in Rocket Ship (5):
$L \ddot{\theta}=-m g \sin (\theta) \approx-m g \theta \Rightarrow \ddot{\theta}=-\omega^{2} \theta$ with $\omega=\sqrt{\frac{m g}{L}}, T=\frac{2 \pi}{\omega}$.
Pendulum (6). Equate the maximum kinetic with the maximum potential energy:

$$
K_{\max }=\frac{1}{2} M \dot{\phi}^{2} L^{2}=U_{\max }=M g L\left[1-\cos \left(\phi_{\max }\right)\right] .
$$

CAPA seems to use the approximation $1-\cos \left(\phi_{\max }\right)=\phi_{\max }^{2} / 2$.
Damped SHM (7). With probability p, reduction factor r :

$$
p=\exp \left[x \ln \left(r^{2}\right)\right], \quad t=x T .
$$

