Waves I - 1

Transverse, travelling waves (2), (3): $y(x, t) = A \sin(kx - \omega t)$. Wavelength $\lambda = 2\pi/k$, period $T = 2\pi/\omega$, velocity v: $kx - \omega t = const \Rightarrow x - v t = \frac{const}{k}$, $v = \frac{\omega}{k}$.

Transverse string wave (4): Solve

$$\mathbf{v} = \sqrt{\frac{T}{\mu}} \quad \text{for} \quad T \,.$$

Decibel (Db) (5). With β given in Db the attenuation factor is

$$f = 10^{x}$$
 with $\beta = 10 \log_{10}(10^{x}) = 10 x$.

Note that the sound level is reduced by the inverse of this factor.

Stretched Spring (6): Imagine that this spring is a rubber strap. With a numerical values for v/v_0 , *n* given, and L_1 known, solve

$$\left(\frac{v}{v_0}\right) = \sqrt{\frac{\mu_0 \left(n L_1 - L_0\right)}{\mu \left(L_1 - L_0\right)}}\,.$$

for L_0 . Note that you also need to use the definitions of μ_0 and μ .