Fluids - 1

Car in a Lake (1): Density of water $\rho = 10^3 kg/m^3$, $M = V \rho$, $F_{outside} = M g + A atm$

with V volume and A area. F_{inside} is then obvious.

Ballon (2): $M = V (\rho_a - \rho_g)$. Ballon II (3):

$$F_B = Mg$$
, $M = V\rho$.

Then:

$$F_w + F_r = F = V g \left(\rho - \rho_b\right)$$

and solve for for ρ_b .

Specific Gravity (4):

 $sg = \frac{{\rm weight ~of~object~in~air}}{{\rm weight~loss~when~submerged~in~water}}$ Then multiply sg with the density of water.

Fluids - 2

Debris in Ocean (5). Visible volume:

$$V_{out} = V \; \frac{\rho_{sw} - \rho}{\rho_{sw}}$$

Floating Hollow Sphere (6): Let the number *m* and *n* be given, (i.e., mR and $n\rho_0$). Solve

$$\frac{4\pi}{3}\left[(m\,R)^3 - R^3\right]\,\rho_0 + \frac{4\pi}{3}\,R^3\,\rho_m = \frac{4\pi}{3}\,(m\,R)^3\,n\rho_0$$

for ρ_m .

Hurricane Force (7): Use Bernoulli's equation

$$\triangle P = \frac{1}{2} \rho v^2$$