Fluids - 1

Car in a Lake (1): Density of water $\rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$,

$$
M=V \rho, \quad F_{\text {outside }}=M g+A \text { atm }
$$

with V volume and A area. $F_{\text {inside }}$ is then obvious.
Ballon (2): $M=V\left(\rho_{a}-\rho_{g}\right)$.
Ballon II (3):

$$
F_{B}=M g, \quad M=V \rho
$$

Then:

$$
F_{w}+F_{r}=F=V g\left(\rho-\rho_{b}\right)
$$

and solve for for ρ_{b}.

Specific Gravity (4):

$$
s g=\frac{\text { weight of object in air }}{\text { weight loss when submerged in water }} .
$$

Then multiply $s g$ with the density of water.

Fluids - 2

Debris in Ocean (5). Visible volume:

$$
V_{o u t}=V \frac{\rho_{s w}-\rho}{\rho_{s w}} .
$$

Floating Hollow Sphere (6): Let the number m and n be given, (i.e., $m R$ and $n \rho_{0}$). Solve

$$
\frac{4 \pi}{3}\left[(m R)^{3}-R^{3}\right] \rho_{0}+\frac{4 \pi}{3} R^{3} \rho_{m}=\frac{4 \pi}{3}(m R)^{3} n \rho_{0}
$$

for ρ_{m}.
Hurricane Force (7): Use Bernoulli's equation

$$
\triangle P=\frac{1}{2} \rho v^{2} .
$$

