Temperature and Heat - 1

Fahrenheit and Celcius (1): Solve C = 5(F - 32)/9 for C=F. Convert the result in into Kelvin (K) by adding 273.15.

Energy Dissipation (2): Solve $Q = 4m c \bigtriangleup T = M v_0^2/2$ for $\bigtriangleup T$.

Melting Iceberg (3): With p for percent,

$$Q = Q_1 + Q_2, \quad Q_1 = p \, M \, c \, \triangle T, \quad Q_2 = p \, M \, L_f,$$

where $L_f = 333.5 \times 10^3 J/kg$ is the latent heat of fusion.

Specific Heat of a Metal (4): Solve

$$c_m M (T - T_f) = c_m M_c (T_f - T_i) + c_w M_w (T_f - T_i)$$

for c_m . The specific heat of water is $c_w = 4184 J/kg/K$.

Temperature and Heat - 2

Steam to Ice (5). With s for steam, w for water:

$$Q = M [(T - T_s) c_s + L_s + (T_s - 0) c_w + L_f]$$

where T is the initial temperature of the steam, $T_s = 100 \ C$ the phase transition temperature of steam to water, the latent heat of vaporization is $L_s = 2257 \times 10^3 \ J/kg$. The specific heat of water c_w and the latent heat L_f were already given above.

Potential Energy to Heat (6): Solve

$$M g H = M c_{\text{lead}} (T_f - T_i)$$

for T_f (note that M drops out).