Ideal Gas - 1

Scuba Diver (1): Solve

 $P_1 V_1 = n R T_1$ and $P_2 V_2 = n R T_2$,

where the temperatures are in Kelvin, for V_2/V_1 to find V_2 . To calculate the pressures P_1 and P_2 use $\rho_s = 1.025 \times 10^3 \ kg/m^3$ for the density of sea water and 1 atm = $101 \times 10^3 \ N/m^2$.

Pressure in a Container with Neon Gas (2): Use

$$P_0 V_{\rm mol} = R T_0 \text{ and } P V = n R T$$

with $P_0 = 1$ atm, $V_{mol} = 22.4$ liter, $T_0 = 273.15$ K and $n = M/m_u$, where $m_u = 20.18$ g is the mol mass of Neon, to calculate

$$P=P_0 n \frac{V_{\rm mol}}{V} \frac{T}{T_0}.$$

Ideal Gas (3): The final pressure is $P_f = P_i (V_i/V_f) (T_f/T_i)$, where the initial values P_i , V_i , T_i and final values V_f , T_f are given.

Ideal Gas - 2

Escaping Hydrogen (4). The average kinetic energy is

$${\cal K}_{
m av} = {\cal M}_{
m H_2} \, rac{v^2}{2} = rac{3}{2} \, k \; T \, ,$$

where $M_{\rm H_2} = 2 \times 1.673 \times 10^{-27}$ kg is the mass of one H₂ molecule and $k = 1.381 \times 10^{-23}$ J/K the Boltzmann constant. Use this equation to find $v = v_{\rm rms}$ and calculate the ratio $v_{\rm rms}/v_{\rm escape}$.

Kinetic energy of a Gas (5) (*n* number of moles):

$$\mathcal{K} = n \, N_{\mathrm{Avogadro}} \, rac{3}{2} \, k_{\mathrm{Boltzmann}} \, \mathcal{T} \, .$$