Ideal Gas - 1

Scuba Diver (1): Solve

$$
P_{1} V_{1}=n R T_{1} \quad \text { and } \quad P_{2} V_{2}=n R T_{2},
$$

where the temperatures are in Kelvin, for V_{2} / V_{1} to find V_{2}. To calculate the pressures P_{1} and P_{2} use $\rho_{s}=1.025 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ for the density of sea water and $1 \mathrm{~atm}=101 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$.

Pressure in a Container with Neon Gas (2): Use

$$
P_{0} V_{\mathrm{mol}}=R T_{0} \text { and } P V=n R T
$$

with $P_{0}=1 \mathrm{~atm}, V_{\text {mol }}=22.4$ liter, $T_{0}=273.15 \mathrm{~K}$ and $n=M / m_{u}$, where $m_{u}=20.18 \mathrm{~g}$ is the mol mass of Neon, to calculate

$$
P=P_{0} n \frac{V_{\mathrm{mol}}}{V} \frac{T}{T_{0}} .
$$

Ideal Gas (3): The final pressure is $P_{f}=P_{i}\left(V_{i} / V_{f}\right)\left(T_{f} / T_{i}\right)$, where the initial values P_{i}, V_{i}, T_{i} and final values V_{f}, T_{f} are given.

Ideal Gas - 2

Escaping Hydrogen (4). The average kinetic energy is

$$
K_{\mathrm{av}}=M_{\mathrm{H}_{2}} \frac{v^{2}}{2}=\frac{3}{2} k T,
$$

where $M_{\mathrm{H}_{2}}=2 \times 1.673 \times 10^{-27} \mathrm{~kg}$ is the mass of one H_{2} molecule and $k=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ the Boltzmann constant. Use this equation to find $v=v_{\text {rms }}$ and calculate the ratio $v_{\text {rms }} / v_{\text {escape }}$.

Kinetic energy of a Gas (5) (n number of moles):

$$
K=n N_{\text {Avogadro }} \frac{3}{2} k_{\text {Boltzmann }} T .
$$

