1st Law of Thermodynamics - 1

Monatomic Gas Isobar (1): 1. The number of moles follows from $P V_i = n R T_i$, where P and the initial values V_i , T_i are given, and $R = 8.31 J/(K \cdot mol)$ is the gas constant.

- 2. Final temperature from $P V_f = n R T_f$, where P and V_f are given.
- 3. Work $W = P(V_f V_i)$.

P V **Diagram Work (2):** 1. Work on path A: $W = P_1(V_2 - V_1)$.

2. Work on path B: $W = \int_{V_1}^{V_2} P(V) \, dV$, where we have to determine P(V) first, which is a straight line. From the figure the slope a of P(V) is seen to be

$$a = \frac{P_2 - P_1}{V_2 - V_1} \Rightarrow P(V) = P_1 + a(V - V_1)$$

and the integration can be performed:

$$W = \int_{V_1}^{V_2} P(V) dV = (V_2 - V_1) P_1 + a (V_2^2 - V_1^2)/2 - (P_2 - P_1) V_1.$$

3. Work on path C: $W = P_2 (V_2 - V_1)$.

1st Law of Thermodynamics - 2

Isothermal Expansion Work (4): P V = n R T with T constant implies

$$W = \int_{V_1}^{V_2} P(V) \, dV = n \, R \, T \int_{V_1}^{V_2} \frac{dV}{V} = n \, R \, T \, \ln \left(\frac{V_2}{V_1} \right) \, .$$

Note: $nRT = P_1 V_1$ and one liter= $(0.1)^3 m^3$.

Thermodynamic system (5): U, W, Q. Find the sign of $\triangle U$ from $U = c_V T$ and P V = nR T, from $\triangle W = \int_{V_1}^{V_2} P(V) \, dV$ the sign of $\triangle W$. Then, if the sum of $\triangle U$ and $\triangle W$ is positive (negative) $\triangle Q$ is positive (negative) because of energy conservation.

April 23, 2018 2 / 2