## 1st Law of Thermodynamics - 1

Monatomic Gas Isobar (1): 1. The number of moles follows from $P V_{i}=n R T_{i}$, where $P$ and the initial values $V_{i}, T_{i}$ are given, and $R=8.31 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol})$ is the gas constant.
2. Final temperature from $P V_{f}=n R T_{f}$, where $P$ and $V_{f}$ are given.
3. Work $W=P\left(V_{f}-V_{i}\right)$.
$P V$ Diagram Work (2): 1 . Work on path A: $W=P_{1}\left(V_{2}-V_{1}\right)$.
2. Work on path $\mathrm{B}: W=\int_{V_{1}}^{V_{2}} P(V) d V$, where we have to determine $P(V)$ first, which is a straight line. From the figure the slope a of $P(V)$ is seen to be

$$
a=\frac{P_{2}-P_{1}}{V_{2}-V_{1}} \Rightarrow P(V)=P_{1}+a\left(V-V_{1}\right)
$$

and the integration can be performed: $W=\int_{V_{1}}^{V_{2}} P(V) d V=\left(V_{2}-V_{1}\right) P_{1}+a\left(V_{2}^{2}-V_{1}^{2}\right) / 2-\left(P_{2}-P_{1}\right) V_{1}$.
3. Work on path C: $W=P_{2}\left(V_{2}-V_{1}\right)$.

## 1st Law of Thermodynamics - 2

Isothermal Expansion Work (4): $P V=n R T$ with $T$ constant implies

$$
W=\int_{V_{1}}^{V_{2}} P(V) d V=n R T \int_{V_{1}}^{V_{2}} \frac{d V}{V}=n R T \ln \left(\frac{V_{2}}{V_{1}}\right) .
$$

Note: $n R T=P_{1} V_{1}$ and one liter $=(0.1)^{3} m^{3}$.
Thermodynamic system (5): $U, W, Q$. Find the sign of $\triangle U$ from $U=c_{V} T$ and $P V=n R T$, from $\Delta W=\int_{V_{1}}^{V_{2}} P(V) d V$ the sign of $\triangle W$. Then, if the sum of $\triangle U$ and $\triangle W$ is positive (negative) $\triangle Q$ is positive (negative) because of energy conservation.

