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Electrodynamics B (PHY 5347) Winter/Spring 2017 Solutions

Set 3:

4. Magnetism in matter.

(1) For this magnetostatics problem with no free currents the relevant

Maxwell equations are

∇ · ~B = 0 and ∇× ~H = 0

with the associated boundary conditions (BCs)

r̂ ·
(
~B2 − ~B1

)∣∣∣
r=a,b

= 0 , r̂ ×
(
~H2 − ~H1

)∣∣∣
r=a,b

= 0 .

(2) Since ∇× ~H = 0 we have ~H = −∇Φ and thus 0 = ∇ · ~B = ∇ ·
(
µ ~H
)

.

From the BCs we get

0 = r̂ ·
(
~B2 − ~B1

)
= r̂ ·

(
µ2
~H2 − µ1

~H1

)
= −µ2

∂Φ2

∂ r
+ µ1

∂Φ1

∂ r

and, because of symmetry Φ(~x) = Φ(r, θ),

0 = r̂ ×
(
~H2 − ~H1

)
= r̂ × (−∇Φ2 +∇Φ1) =

r̂ × θ̂
r

(
−∂Φ2

∂ θ
+
∂Φ1

∂ θ

)
.

(3) The solution is dictated by the behavior of the field at infinity:

lim
r→∞

~B(~r) = ~B0 = B0 ẑ ⇒ lim
r→∞

Φ(~r) = −B0 z = −B0 r cos θ = −B0 r P1(cos θ) .

Thus, we obtain for the Pl(cos θ) Legendre polynomials

Φ1(~r) = Arl Pl(cos θ) for r < a (no singular contribution) ,

Φ2(~r) =

(
B rl +

C

rl+1

)
Pl(cos θ) for a < r < b ,

Φ3(~r) = −δ1lB0 r cos θ +
D

rl+1
Pl(cos θ) for r > b .

Using the BCs we obtain:

Aal = B al +
C

al+1
(continuity of r̂ × ~H at r = a) ,

l A al−1 = µ

(
l B − (l + 1)

C

al+2

)
(continuity of r̂ · ~B at r = a) ,

B bl +
C

bl+1
= −δ1lB0 b+

D

bl+1
(continuity of r̂ × ~H at r = b) ,
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µ

(
l B bl−1 − (l + 1)

C

bl+2

)
=

− δ1lB0 − (l + 1)
D

bl+2
(continuity of r̂ · ~B at r = b) .

For l ≥ 2 a solution is A = B = C = D = 0 and it is the only

solution as long as the determinant of the associated linear system of

four equations with four unknowns is not zero. Thus, we keep only

l = 1:

Aa = B a+
C

a2
(continuity of r̂ × ~H at r = a) ,

A = µ

(
B − 2C

a3

)
(continuity of r̂ · ~B at r = a) ,

B b+
C

b2
= −B0 b+

D

b2
(continuity of r̂ × ~H at r = b) ,

µ

(
B − 2C

b3

)
= −B0 −

2D

b3
(continuity of r̂ · ~B at r = b) .

From the BCs at r = a we obtain

B =

(
1 + 2µ

3µ

)
A , C =

(
µ− 1

3µ

)
a3A ,

and from the BCs at r = b we get

B = −
(

1 + 2µ

3µ

)
B0 +

2 (µ− 1)

3µ b3
D , C = −

(
µ− 1

3µ

)
b3B0 +

(
2 + µ

3µ

)
D .

Thus, the four unknown constant can all be determined in terms of

B0. Eliminating B and C in favor of A in the last two equations, these

become (
1 + 2µ

3µ

)
A = −

(
1 + 2µ

3µ

)
B0 +

2 (µ− 1)

3µ b3
D ,(

µ− 1

3µ

)
a3A = −

(
µ− 1

3µ

)
b3B0 +

(
2 + µ

3µ

)
D ,

with the solutions

A =
−9 b3 µB0

b3 (2µ+ 1) (µ+ 2)− 2a3 (µ− 1)2
, D =

(2µ+ 1) (µ− 1) (b3 − a3) b3B0

b3 (2µ+ 1) (µ+ 2)− 2a3 (µ− 1)2
.
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The constants B and C for the region a < r < b are best expressed in

terms of A. That is,

B =

(
1 + 2µ

3µ

)
A , C =

(
µ− 1

3µ

)
a3A .

Note that for B0 = 0 all coefficient become zero.

(4) In the limit µ → ∞ we obtain A ∼ B0/µ and, hence, A = B = C = 0

(no field in the inner sphere) and

D → 2µ2 (b3 − a3) b3B0

2µ2 (b3 − a3)
= b3B0 .

Thus,

Φ1(~r) = 0 and Φ3(~r) =

(
−B0 r +

b3

r2
B0

)
cos θ

= −B0 z +
~m · ~r
r3

with ~m = b3B0 ẑ .

We obtain

B3(~r) = −∇Φ3(~r) = B0 ẑ − (~m · ~r )∇ 1

r3
− 1

r3
∇ (~m · ~r )

= ~B0 +
3 (~m · ~r ) r̂

r4
− ~m

r3
= ~B0 +

3 (~m · r̂ ) r̂ − ~m

r3
,

i.e., we find a magnetic dipole correction to the constant magnetic field.

5. Faraday’s law of induction in a constant magnetic field.

We use the initial condition n̂ = ŷ at time t = 0, where n̂ is the normal

to the surface.

(1) For the left-hand side we have to calculate

−1

c

Φm
d t

with Φm =

∫
S

~B · n̂ da and n̂ = φ̂ = − sin(ω t) x̂+cos(ω t) ŷ

for the normal to the surface, where we use cylindrical coordinates and

φ = ωt. With ~B = B0 ŷ we obtain for the left-hand side the result

~B · n̂ = B0 cos(ω t) and Φm = B0 L
2 cos(ω t) ,

−1

c

d

dt
Φm = c−1B0 L

2 ω sin(ω t) .
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On the right-hand side the electric field ~E does not contribute, because

we have a constant magnetic field and, hence,

∇× ~E = −1

c

∂

∂t
~B = 0 ⇒

∮
C

~E · d~l = 0 ,

so that the equation becomes

1

c

∮
C

(
~v × ~B

)
· d~l ,

where the velocity is that of the line element d~l. With ρ =
√
x2 + y2

~v = ρω φ̂ = ρω [− sin(ω t) x̂+ cos(ω t) ŷ]

~v × ~B = −ρω B0 sin(ω t) x̂× ŷ = −ρω B0 sin(ω t) ẑ .

Therefore, only the line elements in ẑ direction contribute, which are

at ρ = L/2. The integral becomes (note the right-handed orientation

of the loop)

1

c

∮
C

(
~v × ~B

)
· d~l = −B0 Lω

2 c
sin(ω t)

[∫ 0

L

dz −
∫ L

0

dz

]
= c−1B0 L

2 ω sinω t) .

(2) We have

∇·~v =

(
ρ̂
∂

∂ρ
+
φ̂

ρ

∂

∂φ
+ ẑ

∂

∂z

)
·ω ρ φ̂ = 0 ⇒ 1

c

∫
S

(∇ · ~v) ~B ·d~a = 0 .

Next, (
~B · ∇

)
~v = B0

∂~v

∂y
= B0 ŷ ·

(
ρ̂
∂

∂ρ
+
φ̂

ρ

∂

∂φ
+ ẑ

∂

∂z

)
~v

= B0

(
sin(ωt)

∂

∂ρ
+

cos(ωt)

ρ

∂

∂φ

)
ω ρ φ̂

= B0 ω
(

sin(ωt) φ̂− cos(ωt) ρ̂
)

and, therefore (using φ̂ · n̂ = 1 and ρ̂ · n̂ = 0),

1

c

∫
S

(
~B · ∇

)
~v · d~a = c−1ωB0 L

2 sin(ωt) .
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Further

1

c

∫
S

(~v · ∇) ~B · d~a = 0 ,

because ~B is constant. Finally,

~v × ~B = −ρω B0 sin(ωt) ẑ ,

∇× ρω B0 sin(ωt) ẑ = −ωB0 sin(ωt) ρ̂× ẑ = +ωB0 sin(ωt) φ̂− ωB0 sin(ωt) ρ̂

and φ̂ · n̂ = 1 implies

1

c

∫
S

∇×
(
~v × ~B

)
· d~a = c−1B0 L

2 ω sin(ω t)

as before. The results are consistent with the vector relation

∇×
(
~v × ~B

)
=
(
∇ · ~B

)
~v +

(
~B · ∇

)
~v − (∇ · ~v) ~B − (~v · ∇) ~B .

(3) We have now n̂ = x̂ and, therefore,

Φm =

∫
S

~B · n̂ da = B0 L
2 sin(ω t) .

Differentiation with respect to the time gives

−1

c

d

dt
Φm = −c−1B0 L

2 ω cos(ω t) .

This is the previous result phase-shifted due to different initial condi-

tions.

6. LCR circuit.

(1) As function of the angular frequency the maximum of the current is

given by

Imax(ω) =
εmax

Z
=

εmax√
[1/(ωC)− ωL]

2
+R2

,

which implies for the resonance frequency

f0 =
ω0

2π
=

1

2π
√
LC

=
1

2π
√

2 [H] 2 10−6 [F ]
=

1

4π 10−3 [s]
= 79.6 [Hz] .
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(2) Let εmax = 100 [V ] and ω60 = 120π [Hz]. Then,

XC =
1

ω60C
= 1326.3 [V/A] , XL = ω60L = 754.0 [V/A] ,

Imax(ω60) =
100 [V ]√

(XC −XL)
2

+R2

= 0.175 [A] ,

whereas at resonance frequency we have Imax(ω0) = εmax/R = 5 [A].

This is with 28.6 almost thirty times larger than the maximum for ω60.

For the charge maximum we have

Qmax(ω) =
εmax

ω Z
=
Imax(ω)

ω
.

resulting in Qmax(ω60) = 0.00046 [C] and Qmax(ω0) = 0.01 [C]. The

ratio is down to 21.6.

(3) The phase shift at 60 [Hz] is rather small:

tan δ =
R

XL −XC
= −0.0349 ⇒ δ = −2o .

7. Complex numbers and integration.

(1) z = x− iy.

(2) |z| = +
√
x2 + y2.

(3)

1

z
=

z

z z
=

x− iy
x2 + y2

.

(4) z = |z| eiφ = r eiφ, tan(φ) = y/x.

(5) In cylindrical coordinates

In =

∮
C

dz zn =

∫ 2π

0

R i ei φ dφRn ei n φ = i Rn+1

∫ 2π

0

dφ ei (n+1)φ

For n 6= −1:

In =
i Rn+1

i (n+ 1)
ei (n+1)φ

∣∣∣2π
0

=
Rn+1

(n+ 1)

(
ei (n+1) 2π − 1

)
= 0 .

For n = −1:

I−1 =

∮
C

dz

z
= i

∫ 2π

0

dφ = 2π i .


