Electrodynamics B (PHY 5347) Winter/Spring 2014 Solutions for the Midterm.

1. Bar sliding in a magnetic field.

(a) Since the B field is constant the magnetic flux is

o
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Therefore, the induced emf in the loop is
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The same result is obtained using the Lorentz force:
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(b) Since the resistance of the loop is R(t) = [2w + 2(I — vt)] r, we have the current
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2. Four-potential of a moving point particle.
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FIG. 1: Backward light cone and worldline in Minkowski space.

The worldline is given by y! = 0.59° = 0.5¢t. As light travels in one [ps] by 3 [dm],
the equation for the relevant part of the backward light cone is ' = 3 [dm] — ¢°. Both



meet when times and positions agree. Subtracting the first from the second equation
gives

0=3[dm] —1.5y" = 3[dm] — 1.5 x 3 x 10° [dm/s]|t,
which solves for
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t = §x10—9[s] = g[ps] and R=pfct=1 [dm].

We find the potentials now from the equations
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We have § = 9' = (1/2) 91 and, as the point charge moves away from the observer,
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R=Rn=— , i.e., n = —g;. Therefore,
<1>(1[ ]6)—7% —2[/d]
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. Euler-Lagrange equation.

First,
oL oL

Oy~ 0 (Oshap)

So, h®8 is antisymmetric and agrees with the electromagnetic field tensor h*? = F5,

=0 = hP 4+ %A -9 AP =0 .

Second,
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Using the antisymmetry of h*?, this reads
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The Lagrangian has led to the inhomogenous Maxwell equations.



