Electrodynamics B (PHY 5347) Winter/Spring 2014 Solutions for the Midterm.

1. Bar sliding in a magnetic field.

(a) Since the B field is constant the magnetic flux is

$$
\Phi=B w(l-v t) \text { and } \frac{d \Phi}{d t}=-B w v
$$

Therefore, the induced emf in the loop is

$$
\varepsilon_{\mathrm{emf}}=-\frac{1}{c} \frac{d \phi}{d t}=c^{-1} B w v
$$

The same result is obtained using the Lorentz force:

$$
\varepsilon_{\mathrm{emf}}=-\frac{1}{c} \oint_{C}(\vec{v} \times \vec{B}) \cdot d \vec{l}=-\frac{B v}{c} \int_{0}^{w} d l=c^{-1} B w v .
$$

(b) Since the resistance of the loop is $R(t)=[2 w+2(l-v t)] r$, we have the current

$$
I(t)=\frac{\varepsilon_{\mathrm{emf}}}{R(t)}=\frac{B w v}{c r[2 w+2(l-v t)]} \text { for } v t \leq l .
$$

2. Four-potential of a moving point particle.

FIG. 1: Backward light cone and worldline in Minkowski space.

The worldline is given by $y^{1}=0.5 y^{0}=0.5 \mathrm{ct}$. As light travels in one [ps] by $3[d m]$, the equation for the relevant part of the backward light cone is $y^{1}=3[d m]-y^{0}$. Both
meet when times and positions agree. Subtracting the first from the second equation gives

$$
0=3[\mathrm{dm}]-1.5 y^{0}=3[\mathrm{dm}]-1.5 \times 3 \times 10^{9}[\mathrm{dm} / \mathrm{s}] t
$$

which solves for

$$
t=\frac{2}{3} \times 10^{-9}[s]=\frac{2}{3}[p s] \text { and } R=\beta c t=1[d m] .
$$

We find the potentials now from the equations

$$
\Phi(t, \vec{x})=\left[\frac{q}{(1-\vec{\beta} \cdot \hat{n}) R}\right]_{\mathrm{ret}}, \quad \vec{A}(t, \vec{x})=\left[\frac{q \vec{\beta}}{(1-\vec{\beta} \cdot \hat{n}) R}\right]_{\mathrm{ret}}
$$

We have $\vec{\beta}=\beta \hat{y}^{1}=(1 / 2) \hat{y}_{1}$ and, as the point charge moves away from the observer, $\vec{R}=R \hat{n}=-R \hat{y}^{1}$, i.e., $\hat{n}=-\hat{y}_{1}$. Therefore,

$$
\begin{aligned}
& \Phi(1[p s], \overrightarrow{0})=\frac{q_{e}}{(1+1 / 2) R}=\frac{2}{3}\left[q_{e} / d m\right] \\
& \vec{A}(1[p s], \overrightarrow{0})=\frac{q_{e}(1 / 2) \hat{y}^{1}}{(1+1 / 2) R}=\frac{1}{3} \hat{y}^{1}\left[q_{e} / d m\right] .
\end{aligned}
$$

3. Euler-Lagrange equation.

First,

$$
\frac{\partial \mathcal{L}}{\partial h_{\alpha \beta}}=\partial_{\gamma} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\gamma} h_{\alpha \beta}\right)}=0 \Rightarrow h^{\alpha \beta}+\partial^{\beta} A^{\alpha}-\partial^{\alpha} A^{\beta}=0
$$

So, $h^{\alpha \beta}$ is antisymmetric and agrees with the electromagnetic field tensor $h^{\alpha \beta}=F^{\alpha \beta}$. Second,

$$
\partial_{\alpha} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} A_{\beta}\right)}=\frac{\partial \mathcal{L}}{\partial A_{\beta}} \Rightarrow \partial_{\alpha}\left(h^{\beta \alpha}-h^{\alpha \beta}\right)=-\frac{8 \pi}{c} J^{\beta} .
$$

Using the antisymmetry of $h^{\alpha \beta}$, this reads

$$
\partial_{\alpha} h^{\alpha \beta}=\frac{4 \pi}{c} J^{\beta} .
$$

The Lagrangian has led to the inhomogenous Maxwell equations.

