Electrodynamics B (PHY 5347) Winter/Spring 2017 Midterm, Feb. 23.

1. Bar sliding in magnetic field (33\%).

A bar slides along two parallel rails separated by a distance w, with no friction and with velocity v. The parallel bars, connector, and sliding bar are all made of a conductor with resistance r per unit length. The bars are in a uniform magnetic field B which is perpendicular to the plane of the bars and directed upward. Assume the bar starts at a distance l from the end.

(a) Use Gaussian unit and calculate the emf in the loop.
(b) Find the current in the bar as a function of time.

2. Four-potential of a moving point particle (33\%).

A pointlike particle with the charge of an electron q_{e} travels with velocity

$$
\beta=\frac{v}{c}=\frac{1}{2}
$$

on the straight line $y^{1}=\beta y^{0}=v t$. Find the electromagnetic potentials which are after one picosecond, i.e., $t=1[p s]=10^{-9}[s]$, observed at the origin $\vec{x}=0$.

Take $3 \times 10^{9}[d m / s]$ (decimeter $[d m]$) for the speed of light, q_{e} as charge unit and give the results in $\left[q_{e} / d m\right]$. First, draw a Minkowski space picture.

You may use

$$
\Phi\left(x^{0}, \vec{x}\right)=\left[\frac{q}{(1-\vec{\beta} \cdot \hat{n}) R}\right]_{\mathrm{ret}}, \quad \vec{A}\left(x^{0}, \vec{x}\right)=\left[\frac{q \vec{\beta}}{(1-\vec{\beta} \cdot \hat{n}) R}\right]_{\mathrm{ret}}
$$

3. Euler-Lagrange equation (33\%).

Consider the Lagrangian

$$
\mathcal{L}=\frac{1}{2} h_{\alpha \beta} h^{\alpha \beta}+h^{\alpha \beta}\left(\partial_{\beta} A_{\alpha}-\partial_{\alpha} A_{\beta}\right)-\frac{8 \pi}{c} A_{\alpha} J^{\alpha}
$$

where $h_{\alpha \beta}$ is a rank two tensor field, $A_{\alpha}(x)$ is a vector field and J_{α} an external current. All these fields are regarded to be independent, including $h_{\alpha \beta}$. Find the equations of motion from the Euler-Lagrange equations of relativistic fields.

