Electrodynamics B (PHY 5347): Spring 2017 Solutions for the Final.

1. Magnetic moment of a sphere.

The charge density on the surface is $\sigma=q /\left(4 \pi R^{2}\right)$, so the current on the sphere becomes (with $r=|\vec{r}|$)

$$
\vec{J}(\vec{r})=\omega r \sin (\theta) \sigma \delta(r-R) \hat{\phi}
$$

The magnetic moment is then

$$
\vec{\mu}=\frac{1}{2 c} \int \vec{r} \times \vec{J} d^{3} x=\frac{1}{2 c} \int \omega^{2} r^{2} \sin (\theta) \sigma \delta(r-R)(-\hat{\theta}) d^{3} x
$$

By symmetry reasons only $\mu_{z} \neq 0$. The projection on the z-axis is found using $\hat{z} \cdot \hat{\theta}=-\sin (\theta)$. So,

$$
\mu_{z}=\frac{2 \pi}{2 c} \omega R^{4} \sigma \int_{0}^{\pi} \sin ^{3}(\theta) d \theta=\frac{\pi}{c} \omega R^{4} \sigma \int_{-1}^{+1}\left(1-x^{2}\right) d x .
$$

The integral has the value $4 / 3$ and our final result is

$$
\mu_{z}=\frac{4 \pi}{3 c} \omega R^{4} \sigma=\frac{\omega R^{2} q}{3 c}
$$

2. Principal value integrals and Green functions for the wave equation.

For $\tau>0$ we have to close in the lower half-plane, where we get no contribution from closing $\left(e^{-i i v \tau}=e^{v \tau} \Rightarrow v<0\right.$ required). The integration path of Fig. 1 leads to the retarded Green function and we have

$$
\begin{gathered}
\lim _{\eta \rightarrow 0} I_{p}(\eta)=I_{p}^{r}=-\frac{i}{2 \omega_{p}}\left(e^{+i \omega_{p} \tau}-e^{-i \omega \tau}\right)= \\
\frac{1}{2 \pi} \lim _{\eta \rightarrow 0}\left[\int_{-\infty}^{-\omega_{p}-\eta} d u \frac{e^{-i u \tau}}{\omega_{p}^{2}-u^{2}}+\int_{-\omega_{p}+\eta}^{\omega_{p}-\eta} d u \frac{e^{-i u \tau}}{\omega_{p}^{2}-u^{2}}+\int_{\omega_{p}+\eta}^{\infty} d u \frac{e^{-i u \tau}}{\omega_{p}^{2}-u^{2}}\right] \\
+\frac{1}{2 \pi} \lim _{\eta \rightarrow 0}\left[\int_{C_{+}\left(-\omega_{p}, \eta\right)} d w \frac{e^{-i w \tau}}{\omega_{p}^{2}-w^{2}}+\int_{C_{+}\left(+\omega_{p}, \eta\right)} d w \frac{e^{-i w \tau}}{\omega_{p}^{2}-w^{2}}\right]
\end{gathered}
$$

where $C_{+}\left(-\omega_{p}, \eta\right)$ denotes the clockwise half-circle of radius η about $-\omega_{p}$ and $C_{+}\left(+\omega_{p}, \eta\right)$ the clockwise half-circle of radius η about $+\omega_{p}$. In the limit $\eta \rightarrow 0$ integration over the half-circles gives half the contribution from the residue theorem for

FIG. 1: A possible integration path $I_{p}(\eta)$, where $\eta>0$ is the radius of the half-circles, and we close in the lower plane.

FIG. 2: Another integration path $I_{p}(\eta)$, where $\eta>0$ is the radius of the half-circles.
the entire integration path, and the integrals on the real axis add up to the principal value definition. So we have

$$
I_{p}^{r}=\frac{1}{2 \pi} P \int_{-\infty}^{+\infty} d u \frac{e^{-i u \tau}}{\omega_{p}^{2}-u^{2}}+\frac{1}{2} I_{p}^{r} \Rightarrow \frac{1}{2 \pi} P \int_{-\infty}^{+\infty} d u \frac{e^{-i u \tau}}{\omega_{p}^{2}-u^{2}}=\frac{1}{2} I_{p}^{r} .
$$

For $\tau<0$ we have to close in the upper half-plane and the integration path of Fig. 1 gives

$$
0=\frac{1}{2 \pi} P \int_{-\infty}^{+\infty} d u \frac{e^{-i u \tau}}{\omega_{p}^{2}-u^{2}}-\frac{i}{4 \omega_{p}}\left(e^{+i \omega_{p} \tau}-e^{-i \omega_{p} \tau}\right) \Rightarrow
$$

$$
\frac{1}{2 \pi} P \int_{-\infty}^{+\infty} d u \frac{e^{-i u \tau}}{\omega_{p}^{2}-u^{2}}=\frac{i}{4 \omega_{p}}\left(e^{+i \omega_{p} \tau}-e^{-i \omega_{p} \tau}\right)=\frac{1}{2} I_{p}^{a}
$$

Alternatively, one could have used the integration path of Fig. 2 and obtains the same results.

3. Far field approximation of two current loops.

Using the given potential \vec{A}, we have (a)

$$
\vec{B}=i k \hat{r} \times \vec{A}=-i k \hat{\theta} A_{\phi}^{0} \sin (\theta) \cos (\theta) \frac{e^{i k r-i \omega t}}{r}
$$

and (b)

$$
\vec{E}=-\hat{r} \times \vec{B}=i k \hat{\phi} A_{\phi}^{0} \sin (\theta) \cos (\theta) \frac{e^{i k r-i \omega t}}{r}
$$

(c) The time-averaged Poynting vector becomes $(\hat{\phi} \times \hat{\theta}=-\hat{r})$

$$
\vec{S}_{\mathrm{av}}=\frac{c}{8 \pi} \vec{E} \times \vec{B}^{*}=\frac{c}{8 \pi} \hat{r} k^{2}\left|A_{\phi}^{0}\right|^{2} \frac{\sin ^{2}(\theta) \cos ^{2}(\theta)}{r^{2}} .
$$

(d) Therefore, the angular intensity distribution is

$$
\left(\frac{d P}{d \Omega}\right)=r^{2} \hat{r} \cdot \vec{S}_{\mathrm{av}}=\frac{c}{8 \pi} k^{2}\left|A_{\phi}^{0}\right| \sin ^{2}(\theta) \cos ^{2}(\theta),
$$

which may be plotted in a polar intensity diagram. This is the quadrupole case (see the figure of the lecture notes).
(e) The maxima of the angular intensity distribution are at

$$
\theta_{1}= \pm \frac{\pi}{4} \text { and } \theta_{2}= \pm \frac{3 \pi}{4}
$$

for which we have $\sin ^{2}\left(\theta_{1,2}\right)=\cos ^{2}\left(\theta_{1,2}\right)=1 / 2$, and, therefore,

$$
\left(\frac{d P}{d \Omega}\right)_{\max }=\frac{c}{32 \pi} k^{2}\left|A_{\phi}^{0}\right| .
$$

(d) The intensity at these values over the average intensity is given by

$$
\begin{aligned}
& g=\frac{\sin ^{2}\left(\theta_{1,2}\right) \cos ^{2}\left(\theta_{1,2}\right)}{\int_{0}^{2 \pi} \int_{-1}^{+1} \sin ^{2}(\theta) \cos ^{2}(\theta) d \cos (\theta) d \phi /(4 \pi)} \\
& =\frac{1}{4 \int_{0}^{1}\left(1-x^{2}\right) x^{2} d x}=\frac{1}{4(1 / 3-1 / 5)}=\frac{15}{8} .
\end{aligned}
$$

