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Electrodynamics B (PHY 5347): Spring 2017 Solutions for the Final.

1. Magnetic moment of a sphere.

The charge density on the surface is σ = q/(4π R2), so the current on the sphere

becomes (with r = |~r|)
~J(~r) = ω r sin(θ)σ δ(r −R) φ̂ .

The magnetic moment is then

~µ =
1

2c

∫
~r × ~J d3x =

1

2c

∫
ω2 r2 sin(θ)σ δ(r −R) (−θ̂) d3x .

By symmetry reasons only µz 6= 0. The projection on the z-axis is found using

ẑ · θ̂ = − sin(θ). So,

µz =
2π

2c
ω R4 σ

∫ π

0
sin3(θ) dθ =

π

c
ω R4 σ

∫ +1

−1

(
1− x2

)
dx .

The integral has the value 4/3 and our final result is

µz =
4π

3c
ω R4 σ =

ωR2 q

3c
.

2. Principal value integrals and Green functions for the wave equation.

For τ > 0 we have to close in the lower half-plane, where we get no contribution from

closing (e−i i v τ = ev τ ⇒ v < 0 required). The integration path of Fig. 1

leads to the retarded Green function and we have

lim
η→0

Ip(η) = Irp = − i

2ωp

(
e+iωpτ − e−iωτ

)
=

1

2π
lim
η→0

[∫ −ωp−η

−∞
du

e−i u τ

ω2
p − u2

+
∫ ωp−η

−ωp+η
du

e−i u τ

ω2
p − u2

+
∫ ∞
ωp+η

du
e−i u τ

ω2
p − u2

]

+
1

2π
lim
η→0

[∫
C+(−ωp,η)

dw
e−i w τ

ω2
p − w2

+
∫
C+(+ωp,η)

dw
e−i w τ

ω2
p − w2

]
,

where C+(−ωp, η) denotes the clockwise half-circle of radius η about −ωp and

C+(+ωp, η) the clockwise half-circle of radius η about +ωp. In the limit η → 0 inte-

gration over the half-circles gives half the contribution from the residue theorem for
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FIG. 1: A possible integration path Ip(η), where η > 0 is the radius of the half-circles, and we

close in the lower plane.
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FIG. 2: Another integration path Ip(η), where η > 0 is the radius of the half-circles.

the entire integration path, and the integrals on the real axis add up to the principal

value definition. So we have

Irp =
1

2π
P
∫ +∞

−∞
du

e−i u τ

ω2
p − u2

+
1

2
Irp ⇒

1

2π
P
∫ +∞

−∞
du

e−i u τ

ω2
p − u2

=
1

2
Irp .

For τ < 0 we have to close in the upper half-plane and the integration path of Fig. 1

gives

0 =
1

2π
P
∫ +∞

−∞
du

e−i u τ

ω2
p − u2

− i

4ωp

(
e+iωpτ − e−iωpτ

)
⇒
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1

2π
P
∫ +∞

−∞
du

e−i u τ

ω2
p − u2

=
i

4ωp

(
e+iωpτ − e−iωpτ

)
=

1

2
Iap .

Alternatively, one could have used the integration path of Fig. 2 and obtains the same

results.

3. Far field approximation of two current loops.

Using the given potential ~A, we have (a)

~B = i k r̂ × ~A = −i k θ̂ A0
φ sin(θ) cos(θ)

ei k r−i ω t

r

and (b)

~E = −r̂ × ~B = i k φ̂ A0
φ sin(θ) cos(θ)

ei k r−i ω t

r
.

(c) The time-averaged Poynting vector becomes (φ̂× θ̂ = −r̂)

~Sav =
c

8π
~E × ~B∗ =

c

8π
r̂ k2

∣∣∣A0
φ

∣∣∣2 sin2(θ) cos2(θ)

r2
.

(d) Therefore, the angular intensity distribution is(
dP

dΩ

)
= r2 r̂ · ~Sav =

c

8π
k2
∣∣∣A0

φ

∣∣∣ sin2(θ) cos2(θ) ,

which may be plotted in a polar intensity diagram. This is the quadrupole case (see

the figure of the lecture notes).

(e) The maxima of the angular intensity distribution are at

θ1 = ±π
4

and θ2 = ±3π

4

for which we have sin2(θ1,2) = cos2(θ1,2) = 1/2, and, therefore,(
dP

dΩ

)
max

=
c

32π
k2
∣∣∣A0

φ

∣∣∣ .
(d) The intensity at these values over the average intensity is given by

g =
sin2(θ1,2) cos2(θ1,2)∫ 2π

0

∫+1
−1 sin2(θ) cos2(θ) d cos(θ) dφ/(4π)

.

=
1

4
∫ 1
0 (1− x2)x2 dx

=
1

4(1/3− 1/5)
=

15

8
.


