Electrodynamics B (PHY 5347): Spring 2017 Solutions for the Final.

. Magnetic moment of a sphere.

The charge density on the surface is ¢ = ¢/(47 R?), so the current on the sphere

becomes (with r = |7])

J(7F) =wr sin(0) o 6(r —R) ¢ .

The magnetic moment is then
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By symmetry reasons only pu, # 0. The projection on the z-axis is found using
2.6 = —sin(6). So,
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The integral has the value 4/3 and our final result is
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. Principal value integrals and Green functions for the wave equation.

For 7 > 0 we have to close in the lower half-plane, where we get no contribution from
closing (e7%"7 = ¢’ = v < 0 required). The integration path of Fig. 1
leads to the retarded Green function and we have
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where Cy(—wp,n) denotes the clockwise half-circle of radius 7 about —w, and

Cy(+wp,n) the clockwise half-circle of radius n about 4+w,. In the limit n — 0 inte-

gration over the half-circles gives half the contribution from the residue theorem for
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FIG. 1: A possible integration path I,(n), where n > 0 is the radius of the half-circles, and we

close in the lower plane.
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FIG. 2: Another integration path I,(n), where n > 0 is the radius of the half-circles.

the entire integration path, and the integrals on the real axis add up to the principal
value definition. So we have
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For 7 < 0 we have to close in the upper half-plane and the integration path of Fig. 1

gives
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Alternatively, one could have used the integration path of Fig. 2 and obtains the same

results.

. Far field approximation of two current loops.

Using the given potential A, we have (a)
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(d) Therefore, the angular intensity distribution is
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which may be plotted in a polar intensity diagram. This is the quadrupole case (see
the figure of the lecture notes).
(e) The maxima of the angular intensity distribution are at
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for which we have sin®(; 5) = cos?(6; ) = 1/2, and, therefore,
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(d) The intensity at these values over the average intensity is given by
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