\noindent {\bf Problem (\ref{ex_skin_depth}):} Skin depth. \smallskip \bigskip \noindent {\bf Problem (\ref{E_TM_boxwg}): TM waves in a rectangular wave guide.} \smallskip \noindent (1) $$ (\nabla_t^2 + \gamma^2)\, E^z = 0\,,\qquad E^z|_S = 0\,, $$ $$ E^z = E^0\, \sin\left(\frac{m\pi x}{a}\right)\, \sin\left(\frac{n\pi y}{a}\right)\, e^{i\,k\,z}\,e^{-i\,\omega\,t}\,, $$ $$ \gamma^2_{n\,m} = \pi^2\,\left[\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 \right]\,, ~~~m=1,2,\dots\,,~~ n=1,2,\dots\,, $$ (2) $$ \gamma^2_{1\,1} = \pi^2\,\left(a^{-2}+b^{-2}\right)\,,~~~~~ \omega_{1\,1} = \frac{c\,\pi}{\sqrt{\mu\,\epsilon}}\ \sqrt{a^{-2}+b^{-2}} $$ (3) $$ \vec{E}_t = \frac{i\,k}{\gamma^2}\,\nabla_t\,E^z\,,~~~~~~ {\rm lowest\ mode:} $$ \begin{eqnarray} \nonumber E^x &=& E_0\,\frac{i\,k}{\pi\,a\,(a^{-2}+b^{-2})}\, \cos\left(\frac{\pi x}{a}\right)\, \sin\left(\frac{\pi y}{a}\right) \\ \nonumber E^y &=& E_0 \,\frac{i\,k}{\pi\,b\,(a^{-2}+b^{-2})}\, \sin\left(\frac{\pi x}{a}\right)\, \cos\left(\frac{\pi y}{a}\right)\,. \end{eqnarray} (4) $$ \vec{H}_t = \frac{\epsilon\,\omega}{c\,k}\,\hat{z}\times\vec{E}_t\,, ~~~~~~{\rm lowest\ mode:} $$ \begin{eqnarray} \nonumber H^x&=&-E_0\,\frac{i}{b\,(a^{-2}+b^{-2})}\,\sqrt{\frac{\epsilon}{\mu}} \, \sin\left(\frac{\pi x}{a}\right)\, \cos\left(\frac{\pi y}{a}\right) \\ \nonumber H^y&=&+E_0\,\frac{i}{a\,(a^{-2}+b^{-2})}\,\sqrt{\frac{\epsilon}{\mu}} \, \cos\left(\frac{\pi x}{a}\right)\, \sin\left(\frac{\pi y}{a}\right)\,. \end{eqnarray} (5) $$ \vec{K} = \frac{c}{4\pi}\,\hat{n}\times\vec{H} $$ Let us choose the convention that $\hat{n}$ points out of the conductor (into the wave guide). Then, $$ {\rm For\ the}\ (x\!-\!z)\!=\!{\rm plane}\ y=0,b: ~~~\hat{n}=\pm\hat{y}\,,~~~\frac{4\pi}{c}\,\vec{K}=\mp\hat{z}\,H^x\,,$$ $$ {\rm For\ the}\ (y\!-\!z)\!=\!{\rm plane}\ x=0,a: ~~~\hat{n}=\pm\hat{x}\,,~~~\frac{4\pi}{c}\,\vec{K}=\pm\hat{z}\,H^y\,.$$ \bigskip \noindent {\bf Problem (\ref{cavity_oscillator}): Cubic cavity oscillator.} \smallskip $$ \vec{E}\ =\ {\hat x}\, E_0\, \sin \left( {\pi y\over a} \right)\, \sin \left( {\pi z\over a} \right)\, e^{-i\omega t}\, . $$ (1) \begin{eqnarray} \nonumber \vec{H} &=& -\frac{i\,c}{\omega\,\mu}\, \nabla\times\vec{E}\ = \\ \nonumber &-&\frac{i\,c}{\omega\,\mu}\,E_0\,\frac{\pi}{a}\,\left[ - \hat{z}\,\cos\left(\frac{\pi y}{a}\right)\, \sin\left(\frac{\pi z}{a}\right)\, + \hat{y}\,\sin\left(\frac{\pi y}{a}\right)\, \cos\left(\frac{\pi z}{a}\right)\,\right]\, e^{-i\omega t}\,. \end{eqnarray} (2) $$ \nabla\cdot\vec{E} = 0~~~{\rm as}\ \vec{E}\ {\rm does\ not\ depend\ on}\ x\,, $$ $$ \nabla\cdot\vec{H} \sim \left[ - \hat{z}\,\cos\left(\frac{\pi y}{a}\right)\, \cos\left(\frac{\pi z}{a}\right)\, + \hat{y}\,\cos\left(\frac{\pi y}{a}\right)\, \cos\left(\frac{\pi z}{a}\right)\,\right]\, e^{-i\omega t} = 0\,. $$ \begin{eqnarray} \nonumber \nabla\times\vec{H} &=& - \frac{i\,c}{\omega\,\mu}\,E_0\,\frac{\pi^2}{a^2} \,\left[ \hat{x}\,\sin\left(\frac{\pi y}{a}\right)\, \sin\left(\frac{\pi z}{a}\right)\, + \hat{x}\,\sin\left(\frac{\pi y}{a}\right)\, \sin\left(\frac{\pi z}{a}\right)\,\right]\,e^{-i\omega t} \\ \nonumber &=& - \frac{i\,c}{\omega\,\mu}\,\frac{2\,\pi^2}{a^2}\,\vec{E} \,=\, - \frac{i\,\omega}{c}\,\epsilon\,\vec{E} \end{eqnarray} where the result of (3) below was used in the last step. BCs: From $\sin(\pi a/a)=\sin(\pi)=0$ we see that $\vec{E}|_S=0$ holds on the boundaries parallel to $\vec{E}$ and on the boundaries where $\vec{H}$ has a perpendicular component $\vec{H}_{\perp}|_S=0$ holds. \smallskip \noindent (3) $$ 0 = \left( \nabla^2-\frac{\mu\epsilon}{c^2}\, \frac{\partial^2~}{\partial t^2}\right)\,\vec{E} = \left( -\frac{\pi^2}{a^2} -\frac{\pi^2}{a^2} \frac{\mu\epsilon}{c^2}\,\omega^2 \right)\,\vec{E}\ \Rightarrow\ \omega = \sqrt{\frac{2}{\mu\epsilon}}\,\frac{c\,\pi}{a}\,. $$ (4) Surface currents: $$ \vec{K} = \frac{c}{4\pi}\,\hat{n}\times\vec{H}\,. $$ Top, bottom $(x\!-\!y)\!-\!{\rm plane},\ z=0,a$: $$ \vec{K} = \pm\frac{c}{4\pi}\,\hat{z}\times\vec{H} = \pm\hat{x}\,\frac{i\,c^2}{4\omega\mu\epsilon a}\, \sin\left(\frac{\pi y}{a}\right)\,, $$ Front, back $(z\!-\!x)\!-\!{\rm plane},\ y=0,a$: $$ \vec{K} = \pm\frac{c}{4\pi}\,\hat{y}\times\vec{H} = \mp\hat{x}\,\frac{i\,c^2}{4\omega\mu\epsilon a}\, \sin\left(\frac{\pi y}{a}\right)\,, $$ Left, right $(y\!-\!z)\!-\!{\rm plane},\ x=0,a$: \begin{eqnarray} \nonumber &\vec{K}& =\,\pm\frac{c}{4\pi}\,\hat{x}\times\vec{H}\,=\\ \nonumber &\mp & \frac{i\,c^2}{4\omega\mu\epsilon a}\,\left[ \hat{y}\,\cos\left(\frac{\pi y}{a}\right)\, \sin\left(\frac{\pi z}{a}\right) + \hat{z}\,\sin\left(\frac{\pi y}{a}\right)\, \cos\left(\frac{\pi z}{a}\right)\, \right]\, e^{-i\omega t}\,. \end{eqnarray} Surface charge density in the $(y\!-\!z)\!-\!{\rm plane}:$ $$ \sigma = \frac{1}{4\pi}\,\frac{2\pi}{\omega^2\mu}\,E_0\, \sin\left(\frac{\pi y}{a}\right)\, \sin\left(\frac{\pi z}{a}\right)\,e^{-i\omega t}\ .$$ % \bigskip % \hfil\break \bigskip